Deep-shade plants have adapted to low-light conditions by varying morphology and physiology of cells and chloroplasts, but it still remains unclear, if prolonged periods of high-light or darkness induce additional modifications in chloroplasts' anatomy and pigment patterns. We studied giant chloroplasts (bizonoplasts) of the deep-shade lycopod Selaginella erythropus in epidermal cells of mature fully developed microphylls and subjected them to prolonged darkness and high-light conditions. Chloroplast size and ultrastructure were investigated by light and electron microscopy. Physiological traits were studied by pigment analyses, photosynthetic performance of photosystem II, and formation of reactive oxygen species. Results show that (a) thylakoid patterns and shape of mature bizonoplasts vary in response to light and dark conditions. (b) Prolonged darkness induces transitory formation of prolamellar bodies, which so far have not been described in mature chloroplasts. (c) Photosynthetic activity is linked to structural responses of chloroplasts. (d) Photosystem II is less active in the upper zone of bizonoplasts and more efficient in the grana region. (e) Formation of reactive oxygen species reflects the stress level caused by high-light. We conclude that during prolonged darkness, chlorophyll persists and even increases; prolamellar bodies form de novo in mature chloroplasts; bizonoplasts have spatial heterogeneity of photosynthetic performance.
The present study is concerned with evaluating the influence of various concentrations of Ag within Cu:Ag bimetallic nanoparticles developed for use as a promising anti-bacterial agent against antibiotic-resistant bacteria. Here, Cu:Ag bimetallic nanoparticles with various concentration ratios (2.5, 5.0, 7.5, and 10 wt%) of Ag in fixed amount of Cu labeled as 1:0.025, 1:0.050, 1:0.075, and 1:0.1 were synthesized using co-precipitation method with ammonium hydroxide and deionized water as solvent, polyvinyl pyrrolidone as a capping agent, and sodium borohydride and ascorbic acid as reducing agents. These formulated products were characterized through a variety of techniques. XRD confirmed phase purity and detected the presence of distinct fcc structures belonging to Cu and Ag phases. FTIR spectroscopy confirmed the presence of vibrational modes corresponding to various functional groups and recorded characteristic peak emanating from the bimetallic. UV–visible spectroscopy revealed reduction in band gap with increasing Ag content. SEM and HR-TEM micrographs revealed spherical morphology of Ag-doped Cu bimetallic with small and large scale agglomerations. The samples exhibited varying dimensions and interlayer spacing. Bactericidal action of synthesized Cu:Ag bimetallic NPs depicted statistically significant (P < 0.05) inhibition zones recorded for various concentrations of Ag dopant against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Acinetobacter baumannii (A. baumannii) ranging from (0.85–2.8 mm), (0.55–1.95 mm) and (0.65–1.85 mm), respectively. Broadly, Cu:Ag bimetallic NPs were found to be more potent against gram-positive compared with gram-negative. Molecular docking study of Ag–Cu bimetallic NPs was performed against β-lactamase which is a key enzyme of cell wall biosynthetic pathway from both S. aureus (Binding score: − 4.981 kcal/mol) and A. bauminnii (Binding score: − 4.013 kcal/mol). Similarly, binding interaction analysis against FabI belonging to fatty acid biosynthetic pathway from A. bauminnii (Binding score: − 3.385 kcal/mol) and S. aureus (Binding score: − 3.012 kcal/mol) along with FabH from E. coli (Binding score: − 4.372 kcal/mol) was undertaken. These theoretical computations indicate Cu-Ag bimetallic NPs as possible inhibitor of selected enzymes. It is suggested that exploring in vitro inhibition potential of these materials may open new avenues for antibiotic discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.