Background: Genetic interaction between Runx2 and Pin1 is critical for embryonic bone formation. Results: Pin1 is a critical modifying enzyme promoting both subnuclear accumulation and protein acetylation of Runx2. Conclusion: Pin1 determines the fate of Runx2 protein in osteoblast differentiation. Significance: The modulation of Pin1 activity may be a clinical target for the regulation of bone formation.
Runx2 is the master transcription factor for bone formation. Haploinsufficiency of RUNX2 is the genetic cause of cleidocranial dysplasia (CCD) that is characterized by hypoplastic clavicles and open fontanels. In this study, we found that Pin1, peptidyl prolyl cis-trans isomerase, is a critical regulator of Runx2 in vivo and in vitro. Pin1 mutant mice developed CCD-like phenotypes with hypoplastic clavicles and open fontanels as found in the Runx2+/− mice. In addition Runx2 protein level was significantly reduced in Pin1 mutant mice. Moreover Pin1 directly interacts with the Runx2 protein in a phosphorylation-dependent manner and subsequently stabilizes Runx2 protein. In the absence of Pin1, Runx2 is rapidly degraded by the ubiquitin-dependent protein degradation pathway. However, Pin1 overexpression strongly attenuated uniquitin-dependent Runx2 degradation. Collectively conformational change of Runx2 by Pin1 is essential for its protein stability and possibly enhances the level of active Runx2 in vivo.
Cell fusion is a fundamental biological event that is essential for the development of multinucleated cells such as osteoclasts. Fusion failure leads to the accumulation of dense bone such as in osteopetrosis, demonstrating the importance of fusion in osteoclast maturity and bone remodeling. In a recent study, we reported that Pin1 plays a role in the regulation of bone formation and Runx2 regulation. In this study, we explored the role of Pin1 in osteoclast formation and bone resorption. Pin1 null mice have low bone mass and increased TRAP staining in histological sections of long bones, compared to Pin1 wild-type mice. In vitro osteoclast forming assays with bone marrow-derived monocyte/macrophage revealed that Pin1-deficient osteoclasts are larger than wild-type osteoclasts and have higher nuclei numbers, indicating greater extent of fusion. Pin1 deficiency also highly enhanced foreign body giant cell formation both in vitro and in vivo. Among the known fusion proteins, only DC-STAMP was significantly increased in Pin1(-/-) osteoclasts. Immunohistochemistry showed that DC-STAMP expression was also significantly increased in tibial metaphysis of Pin1 KO mice. We found that Pin1 binds and isomerizes DC-STAMP and affects its expression levels and localization at the plasma membrane. Taken together, our data indicate that Pin1 is a determinant of bone mass through the regulation of the osteoclast fusion protein DC-STAMP. The identification of Pin1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis, and opens new avenues for therapeutic targets.
The canonical Wnt signaling pathway, in which -catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of -catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear -catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes -catenin in the nucleus. The isomerized -catenin could not bind to nuclear adenomatous polyposis coli, which drives -catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of -catenin in the nucleus and might explain the decrease of -catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate -catenin-mediated osteogenesis.
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of numerous proteins. Previously, we reported that Pin1 deficiency resulted in defects in osteoblast differentiation during early bone development. In this study, we found that adult Pin1-deficient mice developed osteoporotic phenotypes compared to age-matched controls. Since BMP2 stored in the bone matrix plays a critical role in adult bone maintenance, we suspected that BMP R-Smads (Smad1 and Smad5) could be critical targets for Pin1 action. Pin1 specifically binds to the phosphorylated linker region of Smad1, which leads to structural modification and stabilization of the Smad1 protein. In this process, Pin1-mediated conformational modification of Smad1 directly suppresses the Smurf1 interaction with Smad1, thereby promoting sustained activation of the Smad1 molecule. Our data demonstrate that post-phosphorylational prolyl isomerization of Smad1 is a converging signal to stabilize the Smad1 molecule against the ubiquitination process mediated by Smurf1. Therefore, Pin1 is a critical molecular switch in the determination of Smad1 fate, opposing the death signal transmitted to the Smad1 linker region by phosphorylation cascades after its nuclear localization and transcriptional activation. Thus, Pin1 could be developed as a major therapeutic target in many skeletal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.