The remarkable optoelectronic properties and considerable performance of the organo lead‐halide perovskites (PVKs) in various optoelectronic applications grasp tremendous scientific attention. However, the existence of the toxic lead in these compounds is threatening human health and remains a major concern in the way of their commercialization. To address this issue, numerous nontoxic alternatives have been reported. Among these alternatives, bismuth‐based PVKs have emerged as a promising substitute because of similar optoelectronic properties and extended environmental stability. This work communicates briefly about the possible lead‐alternatives and explores bismuth‐based perovskites comprehensively, in terms of their structures, optoelectronic properties, and applications. A brief description of lead‐toxification is provided and the possible Pb‐alternatives from the periodic table are scrutinized. Then, the classification and crystal structures of various Bi‐based perovskites are elaborated on. Detailed optoelectronic properties of Bi‐based perovskites are also described and their optoelectronic applications are abridged. The overall photovoltaic applications along with device characteristics (i.e.,
V
OC
,
J
SC
, fill factor, FF, and power conversion efficiency, PCE), fabrication method, device architecture, and operational stability are also summarized. Finally, a conclusion is drawn where a brief outlook highlights the challenges that hamper the future progress of Bi‐based optoelectronic devices and suggestions for future directions are provided.
Tind iselenide (SnSe 2 ), as an anodem aterial,h as outstandingp otential for use in advanced lithium-ion batteries. However,l ike other tin-based anodes, SnSe 2 suffers from poor cycle life and low rate capabilityd ue to large volume expansion during the repeated Li + insertion/de-insertion process. This work reports an effectivea nd easy strategy to combine SnSe 2 and carbon nanotubes (CNTs) to form a SnSe 2 /CNTsh ybrid nanostructure. The synthesized SnSe 2 has ar egularh exagonal shape with at ypical 2D nanostructure and the carbon nanotubes combine well with the SnSe 2 nanosheets. The hybrid nanostructure can significantly reduce the serious damage to electrodes that occurs during electrochemical cycling processes. Remarkably,t he SnSe 2 / CNTse lectrodee xhibits ah igh reversible specific capacity of 457.6 mA hg À1 at 0.1 Ca nd 210.3 mA hg À1 after 100 cycles. At ac ycling rate of 0.5 C, the SnSe 2 /CNTse lectrode can still achieve ah igh value of 176.5 mA hg À1 ,w hereas av alue of 45.8 mA hg À1 is achieved for the pure SnSe 2 electrode. The enhanced electrochemical performance of the SnSe 2 /CNTs electrode demonstrates its great potential for use in lithiumion batteries.T hus, this work reports af acile approacht o the synthesis of SnSe 2 /CNTsa sap romising anode material for lithium-ionb atteries.Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.