In many organisms, population-density sensing and sexual attraction rely on small-molecule-based signalling systems1,2. In the nematode Caenorhabditis elegans, population density is monitored through specific glycosides of the dideoxysugar ascarylose (the `ascarosides') that promote entry into an alternative larval stage, the non-feeding and highly persistent dauer stage3,4. In addition, adult C. elegans males are attracted to hermaphrodites by a previously unidentified small-molecule signal5,6. Here we show, by means of combinatorial activity-guided fractionation of the C. elegans metabolome, that the mating signal consists of a synergistic blend of three dauer-inducing ascarosides, which we call ascr#2, ascr#3 and ascr#4. This blend of ascarosides acts as a potent male attractant at very low concentrations, whereas at the higher concentrations required for dauer formation the compounds no longer attract males and instead deter hermaphrodites. The ascarosides ascr#2 and ascr#3 carry different, but overlapping, information, as ascr#3 is more potent as a male attractant than ascr#2, whereas ascr#2 is slightly more potent than ascr#3 in promoting dauer formation7. We demonstrate that ascr#2, ascr#3 and ascr#4 are strongly synergistic, and that two types of neuron, the amphid single-ciliated sensory neuron type K (ASK) and the male-specific cephalic companion neuron (CEM), are required for male attraction by ascr#3. On the basis of these results, male attraction and dauer formation in C. elegans appear as alternative behavioural responses to a common set of signalling molecules. The ascaroside signalling system thus connects reproductive and developmental pathways and represents a unique example of structure- and concentration-dependent differential activity of signalling molecules.
Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure-activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the maleattracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying smallmolecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits.dauer formation ͉ differential analysis ͉ metabolomics ͉ NMR spectroscopy ͉ sex pheromone
Background: G protein-coupled receptors (GPCRs) adopt multiple structural conformations whose functional significance remains unclear. Results: Novel FRET-based sensors were developed to detect the stabilization of G protein-specific GPCR conformations in live cells. Conclusion: FRET measurements delineate distinct structural mechanisms for three 2-adrenergic receptor ligands. Significance: This study extensively validates a new technology that links GPCR conformation and function in live cells.
G protein ␣ subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of G␣ i . Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function.Heterotrimeric G proteins are key mediators of intracellular signaling pathways that control diverse cellular processes ranging from movement and division to differentiation and neuronal activity (1). G proteins consist of three subunits: G␣, G, and G␥. Bound with GDP, G␣ forms an inactive complex with its G␥ subunit partners. Interaction with activated receptor (GPCR) 3 promotes the exchange of GDP for GTP on G␣ and its separation from G␥. Both isolated G␣ and G␥ can then bind and activate or inhibit downstream effectors. GTP hydrolysis deactivates G␣, which subsequently reassociates with G␥ completing the cycle. This cycle is further regulated by two classes of additional proteins called regulators of G protein signaling. These function as either GTPase-activating proteins (which promote GTP hydrolysis) or GDP dissociation inhibitors (GDIs, which hinder exchange of GDP for GTP) (2). Important conformational transitions occurring at each stage of this regulated cycle have been characterized from extensive crystallographic studies. These include GDP, GTP analogue, G␥, GTPase-activating protein, GDI and most recently GPCR bound complex structures of G␣. However, the link between the observed conformations and the atomic level mechanisms involved in coupling receptor association, G protein activation, and effector interaction remain unclear.All G␣ proteins consist of a catalytic GTP binding Ras-like domain (termed RasD) and a heterotrimeric G protein specific helical domain (HD). Recent principal component analysis (PCA) of 53 available G␣ crystallographic structures identified three major conformationally distinct groups ( Fig. 1 and Ref. 3). These groups correspond to structures with bound GTP analogues, GDP, and GDI (red, green, and blue points in Fig. 1a, respectively). The major variation in the accumulated structures is the concerted displacements of three nucleotide-binding site loops termed the switch regions (SI, SII, and SIII), as well as a relatively small...
Lifespan in Caenorhabditis elegans, Drosophila, and mice is regulated by conserved signaling networks, including the insulin/insulinlike growth factor 1 (IGF-1) signaling cascade and pathways depending on sirtuins, a family of NAD + -dependent deacetylases. Small molecules such as resveratrol are of great interest because they increase lifespan in many species in a sirtuin-dependent manner. However, no endogenous small molecules that regulate lifespan via sirtuins have been identified, and the mechanisms underlying sirtuin-dependent longevity are not well understood. Here, we show that in C. elegans, two endogenously produced small molecules, the dauer-inducing ascarosides ascr#2 and ascr#3, regulate lifespan and stress resistance through chemosensory pathways and the sirtuin SIR-2.1. Ascarosides extend adult lifespan and stress resistance without reducing fecundity or feeding rate, and these effects are reduced or abolished when nutrients are restricted. We found that ascaroside-mediated longevity is fully abolished by loss of SIR-2.1 and that the effect of ascr#2 requires expression of the G protein-coupled receptor DAF-37 in specific chemosensory neurons. In contrast to many other lifespan-modulating factors, ascarosidemediated lifespan increases do not require insulin signaling via the FOXO homolog DAF-16 or the insulin/IGF-1-receptor homolog DAF-2. Our study demonstrates that C. elegans produces specific small molecules to control adult lifespan in a sirtuin-dependent manner, supporting the hypothesis that endogenous regulation of metazoan lifespan functions, in part, via sirtuins. These findings strengthen the link between chemosensory inputs and conserved mechanisms of lifespan regulation in metazoans and suggest a model for communal lifespan regulation in C. elegans.aging | chemosensation | β oxidation | ecology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.