Previous surveys proved that data mining is one of the methods that can be utilized for climate prediction, predominantly clustering and classification are the most applied methods in data mining to build a model to predict changes in the climate. Unlike the climate change, climate variability is a phenomenon where the occurrence of climate uncertainty is according to the changes year to year basis. This study is focusing to look at the effectiveness of the Association Rule Mining (ARM) techniques in predicting climate variability events in Malaysia. In this report, it explained how the patterns that exist within climate data is discovered using ARM and how the extracted pattern is used to predict climate variability. In this report also, a framework is developed to explain how ARM can generate rules and extract patterns from the data and how the extracted rules and patterns is used to develop a model for predicting climate variability event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.