Relay nodes are necessary to maintain scalability and increase longevity as the number of manufacturing industrial sensors grows. In a fixed-budget circumstance, however, the cost of purchasing the bare minimum of relay nodes to connect the network may exceed the budget. Although it is hard to establish a network that connects all sensor nodes, in this case, a network with a high level of connection is still desirable. This paper proposes two metrics for determining the connectedness of a disconnected graph of sensor nodes and determining the optimum deployment method for relay nodes in a network with the highest connectedness while staying within a budget restriction. The metrics are the number of connected graph components and the size of the most significant connected graph component. Prim's algorithm and the approximation minimum spanning tree algorithm are applied to construct a disconnected graph and discover the best relay node placement to solve these two criteria. Compared to the other metrics, simulation findings suggest that prioritizing the most significant connected components in the disconnected graph can yield superior outcomes by deploying the fewest number of relay nodes while retaining the connectedness of the graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.