Introduction: Probiotics are well-defined as live microorganisms that usefully affect the host and probiotic bacteria have been used intensely. For years to target gastrointestinal disease by rebalancing the compound microflora. Besides the gastrointestinal tract also the oral cavity is highly colonized by bacteria and many different bacterial species are part of the microbiota in the mouth, as it offers ideal conditions for bacteria with a stable temperature, moist surface with a relatively stable pH and regular supply of nutrients. Probiotic bacteria like Lactobacillus are a promising treatment strategy for oral disease with a microbiological etiology. To gain better results, many researchers that study and emphasize specific methods been tried to build a new or improved methodology. Objectives: The aimed of this study is to improve the performance of exponential growth by adding bootstrap and fuzzy techniques (Integrated exponential regression method). The aim of the research work is to develop a comprehensive framework for an integrated exponential regression model. Material and Methods: The data were taken from the present data available from the recently done by a researcher for nurturing selected microorganisms. The gathered data will be used for the exponential modeling and the efficiency of the model will be compared accordingly due to the predicted interval from the exponential regression method and an integrated exponential regression method. This paper also provides the algorithm for the prediction of cell growth and inferences. Results: The result shows that the average width for the exponential regression model was 19.2228 while an integrated exponential regression method was 0.0075. The average width of integrated exponential regression was smaller than the exponential regression. This clearly shows that the integrated exponential regression method is more efficient than exponential regression technique. Conclusion: This proposed method can be applied to small sample size data, especially when limited data is obtained. Bangladesh Journal of Medical Science Vol.19(3) 2020 p.552-557
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.