Biosynthesis of tin oxide nanoparticles (SnO2 NPs) was cost-effectively carried out in non-toxic aqueous mixture of Aquilaria malaccensis (agarwood) leaves extract and tin (IV) chloride pentahydrate solution at room temperature. The synthesized SnO2 NPs were characterized by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and UV-visible diffuse reflectance spectroscopy (DRS). The results from FT-IR spectra of A. malaccensis leaves shows the presence of functional groups of polyphenolic from bioactive compounds which act as the template for reducing and capping agents during the synthesis activity. The structural properties of the obtained nanoparticles are studied using X-ray diffraction, which indicates that the crystallite size are 6.3 and 3.4 nm for sample synthesized from extract of fresh and old leaves respectively. The morphology of the nanoparticles shows uniform distribution of agglomerated spherical nanoparticles. DRS absorption spectrum indicates the band-gap for both samples 3.23 and 3.35 eV respectively. The green synthesized SnO2 NPs is suggested may play forthcoming significant roles in catalysis and optoelectronic devices.
Today’s nanotechnology progress in biomedical and biotechnology is to design novel materials with exclusive properties of nanoscale structures. The application of nano-structured materials into biomedical systems has received much attention due to its remarkable resolution in assisting diagnoses and treating medical difficulties. The variety of nanostructured materials produced could be easily controlled and manipulated. Moreover, they could be designed to provide a new property in a predictable manner, whereby the modified biological characteristic and functionalities are compatible with biomedical systems for various applications and purposes. All-inclusive, nanotechnology has an enormous impact on health care and undeniably shaping the future pathway. This paper reviews research methods in nanotechnology developments, which convey benefits to the biomedical application on nano-network and communication, biosensor, nanoprobe, drug delivery system and nano implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.