Pressure on ancillary reserves, i.e.frequency preserving, in power systems has significantly mounted due to the recent generalized increase of the fraction of (highly fluctuating) wind and solar energy sources in grid generation mixes. The energy storage associated with millions of individual customer electric thermal (heating-cooling) loads is considered as a tool for smoothing power demand/generation imbalances. The piecewise constant level tracking problem of their collective energy content is formulated as a linear quadratic mean field game problem with integral control in the cost coefficients. The introduction of integral control brings with it a robustness potential to mismodeling, but also the potential of cost coefficient unboundedness. A suitable Banach space is introduced to establish the existence of Nash equilibria for the corresponding infinite population game, and algorithms are proposed for reliably computing a class of desirable near Nash equilibria. Numerical simulations illustrate the flexibility and robustness of the approach.
Inspired by successful biological collective decision mechanisms such as honey bees searching for a new colony or the collective navigation of fish schools, we consider a mean field games (MFG)-like scenario where a large number of agents have to make a choice among a set of different potential target destinations. Each individual both influences and is influenced by the group's decision, as represented by the mean trajectory of all agents. The model can be interpreted as a stylized version of opinion crystallization in an election for example. The agents' biases are dictated first by their initial spatial position and, in a subsequent generalization of the model, by a combination of initial position and a priori individual preference. The agents have linear dynamics and are coupled through a modified form of quadratic cost. Fixed point based finite population equilibrium conditions are identified and associated existence conditions are established. In general multiple equilibria may exist and the agents need to know all initial conditions to compute them precisely. However, as the number of agents increases sufficiently, we show that (i) the computed fixed point equilibria qualify as epsilon Nash equilibria, (ii) agents no longer require all initial conditions to compute the equilibria but rather can do so based on a representative probability distribution of these conditions now viewed as random variables. Numerical results are reported.
We consider a dynamic collective choice problem where a large number of players are cooperatively choosing between multiple destinations while being influenced by the behavior of the group. For example, in a robotic swarm exploring a new environment, a robot might have to choose between multiple sites to visit, but at the same time it should remain close to the group to achieve some coordinated tasks. We show that to find a social optimum for our problem, one needs to solve a set of Linear Quadratic Regulator problems, whose number increases exponentially with the size of the population. Alternatively, we develop via the Mean Field Games methodology a set of decentralized strategies that are independent of the size of the population. When the number of agents is sufficiently large, these strategies qualify as approximately socially optimal. To compute the approximate social optimum, each player needs to know its own state and the statistical distributions of the players' initial states and problem parameters. Finally, we give a numerical example where the cooperative and noncooperative cases have opposite behaviors. Whereas in the former the size of the majority increases with the social effect, in the latter, the existence of a majority is disadvantaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.