Using a group of six neutral M(II)Cl(2)-containing coordination compounds as building blocks, the first systematic investigation of C-H...Cl hydrogen-bonding interactions was performed. Single-crystal X-ray structural analyses of four new compounds (pseudo-tetrahedral Co(II) and Zn(II); distorted trigonal bipyramidal Zn(II)) authenticate the metal coordination geometry. To provide a unified view of the presence of noncovalent interactions in this class of compounds, we have re-examined the packing diagram of two previously reported compounds (a distorted square-pyramidal Cu(II) complex and a trans-octahedral Co(II) complex). The organic ligands of our choice comprise bidentate/tridentate pyrazolylmethylpyridines and an unsymmetrical tridentate pyridylalkylamine. This systematic investigation has allowed us to demonstrate the existence of versatile C-H...Cl(2)M interactions and to report the successful application of such units as inorganic supramolecular synthons. Additional noncovalent interactions such as C-H...O and O-H...Cl hydrogen bonding and pi-pi stacking interactions have also been identified. Formation of novel supramolecular architectures has been revealed: 2D lamellar (p-cyclophane) and 3D lamellar, 3D "stitched staircase" (due to additional hydrogen-bonding interactions by water tetramers, with an average O-O bond length in the tetramer unit of 2.926 A, acting as "molecular clips" between staircases), 3D linked ladder, and single-stranded 1D helix.
alkoxide reaction. The reaction of (C5H5)2YC1(THF) with KOMe-MeOH also generates an oxide in the product, (CsH5)5Y50i-OMe)40x3-OMe)4O,12 and we currently are investigating other examples of this phenomena which we have observed.Li vs Na Countercations. There are numerous examples in organoyttrium and organolanthanide chemistry in which the presence and specific nature of the cation strongly influences the chemistry.2,57,58 Hence, it is not unreasonable to see different results in the NaOCMe3 vs LiOCMe3 reactions. Given the complexity of the LiOCMe3 reactions compared to the NaOCMe3 systems and the presence of several lithium atoms in 3, it appears the lithium is more readily carried along in these systems. This leads to a wider variety of products and crystallographically more difficult systems.
ConclusionsThe reactions of YC13 and LaCl3 with alkali metal alkoxides have provided a new and important class of polylanthanide and polyyttrium alkoxide and oxide complexes. Despite the structural complexity of these complexes it has proven possible to correlate X-ray and 'H NMR data to allow this chemistry to be followed (57) Tilley, T. D.;
The complexes [(L)(2)Ni(II)(2)M(II)(mu(2)-1,3-OAc)(2)(mu(2)-1,1-OAc)(2)(S)(2)] x xMeOH [HL = N-methyl-N-(2-hydroxybenzyl)-2-aminoethyl-2-pyridine; M = Ni, S = MeOH, x = 6 (1); M = Mn, S = H(2)O, x = 0 (2); M = Co, S = MeOH, x = 6 (3)] have been synthesized. Crystal structures reveal that three octahedral MII ions form a linear array with two terminal moieties {(L)Ni(II)(mu(2)-1,3-OAc)(mu(2)-1,1-OAc)(MeOH/H(2)O)}(-) in a facial donor set and a central MII ion which is connected to the terminal ions via bridging phenolate and two types of bridging acetates. Magnetic measurements reveal that the Ni(II)(3) and Ni(II)(2)Co(II) centers are ferromagnetically and Ni(II)(2)Mn(II) center is antiferromagnetically coupled. An attempt has been made to rationalize the observed magneto-structural behavior.
A brownish-black complex [Fe(III)(L)2] (1) (S = 0), supported by two tridentate redox-active azo-appended o-amidophenolates [H2L = 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol], has been synthesized and structurally characterized. In CH2Cl2 1 displays two oxidative and two reductive 1e(-) redox processes at E1/2 values of 0.48 and 1.06 V and -0.42 and -1.48 V vs SCE, respectively. The one-electron oxidized form [1](+) isolated as a green solid [Fe(III)(L)2][BF4] (2) (S = 1/2) has been structurally characterized. Isolation of a dark ink-blue one-electron reduced form [1](-) has also been achieved [Co(III)(η(5)-C10H15)2][Fe(III)(L)2] (3) (S = 1/2). Mössbauer spectral parameters unequivocally establish that 1 is a low-spin (LS) Fe(III) complex. Careful analysis of Mössbauer spectral data of 2 and 3 at 200 and 80 K reveal that each complex has a major LS Fe(III) and a minor LS Fe(II) component (redox isomers): [Fe(III){(L(ISQ))(-•)}2](+) and [Fe(II){(L(IBQ))(0)}{(L(ISQ))(-•)}](+) (2) and [Fe(III){(L(AP))(2-)}2](-) and [Fe(II){(L(ISQ))(-•)}{(L(AP))(2-)}](-) (3). Notably, for both at 8 K mainly the major component exists. Broken-Symmetry (BS) Density Functional Theory (DFT) calculations at the B3LYP level reveals that in 1 the unpaired electron of LS Fe(III) is strongly antiferromagnetically coupled with a π-radical of o-iminobenzosemiquinonate(1-) (L(ISQ))(-•) form of the ligand, delocalized over two ligands providing 3- charge (X-ray structure). DFT calculations reveal that the unpaired electron in 2 is due to (L(ISQ))(-•) [LS Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (L(ISQ))(-•) radicals (Srad = 1/2)] and 3 is primarily a LS Fe(III) complex, supported by two o-amidophenolate(2-) ligands. Time-Dependent-DFT calculations shed light on the origin of UV-vis-NIR spectral absorptions for 1-3. The collective consideration of Mössbauer, variable-temperature (77-298 K) electron paramagnetic resonance (EPR), and absorption spectral behavior at 298 K, and DFT results reveals that in 2 and 3 the valence-tautomerism is operative in the temperature range 80-300 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.