Background-Renin released by ischemia/reperfusion from cardiac mast cells activates a local renin-angiotensin system (RAS). This exacerbates norepinephrine release and reperfusion arrhythmias (ventricular tachycardia and fibrillation), making RAS a new therapeutic target in myocardial ischemia. Methods and Results-We investigated whether ischemic preconditioning (IPC) prevents cardiac RAS activation in guinea pig hearts ex vivo. When ischemia/reperfusion (20 minutes of ischemia/30 minutes of reperfusion) was preceded by IPC (two 5-minute ischemia/reperfusion cycles), renin and norepinephrine release and ventricular tachycardia and fibrillation duration were markedly decreased, a cardioprotective anti-RAS effect. Activation and blockade of adenosine A 2b /A 3 receptors and activation and inhibition of protein kinase C⑀ (PKC⑀) mimicked and prevented, respectively, the anti-RAS effects of IPC. Moreover, activation of A 2b /A 3 receptors or activation of PKC⑀ prevented degranulation and renin release elicited by peroxide in cultured mast cells (HMC-1). Activation and inhibition of mitochondrial aldehyde dehydrogenase type-2 (ALDH2) also mimicked and prevented, respectively, the cardioprotective anti-RAS effects of IPC. Furthermore, ALDH2 activation inhibited degranulation and renin release by reactive aldehydes in HMC-1. Notably, PKC⑀ and ALDH2 were both activated by A 2b /A 3 receptor stimulation in HMC-1, and PKC⑀ inhibition prevented ALDH2 activation. Conclusions-The
We previously reported that mast cells express renin, the ratelimiting enzyme in the renin-angiotensin cascade. We have now assessed whether mast cell renin release triggers angiotensin formation in the airway. In isolated rat bronchial rings, mast cell degranulation released enzyme with angiotensin I-forming activity blocked by the selective renin inhibitor BILA2157. Local generation of angiotensin (ANG II) from mast cell renin elicited bronchial smooth muscle contraction mediated by ANG II type 1 receptors (AT 1R). In a guinea pig model of immediate type hypersensitivity, anaphylactic mast cell degranulation in bronchial rings resulted in ANG II-mediated constriction. As in rat bronchial rings, bronchoconstriction (BC) was inhibited by a renin inhibitor, an AT 1R blocker, and a mast cell stabilizer. Anaphylactic release of renin, histamine, and -hexosaminidase from mast cells was confirmed in the effluent from isolated, perfused guinea pig lung. To relate the significance of this finding to humans, mast cells were isolated from macroscopically normal human lung waste tissue specimens. Sequence analysis of human lung mast cell RNA showed 100% homology between human lung mast cell renin and kidney renin between exons 1 and 10. Furthermore, the renin protein expressed in lung mast cells was enzymatically active. Our results demonstrate the existence of an airway renin-angiotensin system triggered by release of mast-cell renin. The data show that locally produced ANG II is a critical factor governing BC, opening the possibility for novel therapeutic targets in the management of airway disease.angiotensin II ͉ angiotensin II type 1 receptors ͉ asthma ͉ hypersensitivity ͉ lung T he renin-angiotensin system (RAS) has been traditionally viewed as a circulating axis, whereby renin is released into the circulation from the kidneys in response to decreased renal perfusion pressure, decreased delivery of NaCl at the macula densa, and/or increased renal sympathetic nerve activity (1). The proteolytic cleavage of angiotensinogen (aogen) by renin constitutes the rate-limiting step of the RAS cascade.In addition to this classical view, it is believed that many tissues, including the lung, may possess the capacity to generate angiotensin (ANG II) locally (2, 3). This is supported by experiments demonstrating that ANG II persists in lung of nephrectomized rats (4) and findings showing that ANG II can be elevated in the lungs in the absence of an elevated systemic RAS (5). Components of RAS have been identified in lung tissue, including aogen mRNA (6, 7), and angiotensin-converting enzyme (ACE), the pulmonary endothelium being the primary source for ACE in the body (8). ANG II receptors are also expressed in lung tissue, with the ANG II type 1 receptor (AT 1 R) subtype found on bronchial smooth muscle cells (9) and ANG II type 2 receptor (AT 2 R) observed on the bronchial epithelial cell brush border (10). An intrapulmonary source of renin protein has not yet been identified.We previously reported that mast cells synthesize, st...
Mast cells are associated with inflammation and fibrosis. Whether they protect against or contribute to renal fibrosis is unclear. Based on our previous findings that mast cells can express and secrete active renin, and that angiotensin (ANG II) is profibrotic, we hypothesized that mast cells play a critical role in tubulointerstitial fibrosis. We tested this hypothesis in the 14-day unilateral ureteral obstruction (UUO) model in rats and mast cell-deficient (MCD) mice (WBB6F1-W/Wv) and their congenic controls (CC). In the 14-day UUO rat kidney, mast cell number is increased and they express active renin. Stabilizing mast cells in vivo with administration of cromolyn sodium attenuated the development of tubulointerstitial fibrosis, which was confirmed by measuring newly synthesized pepsin-soluble collagen and blind scoring of fixed trichrome-stained kidney sections accompanied by spectral analysis. Fibrosis was absent in UUO kidneys from MCD mice unlike that observed in the CC mice. Losartan treatment reduced the fibrosis in the CC UUO kidneys. The effects of mast cell degranulation and renin release were tested in the isolated, perfused kidney preparation. Mast cell degranulation led to renin-dependent protracted flow recovery. This demonstrates that mast cell renin is active in situ and the ensuing ANG II can modulate intrarenal vascular resistance in the UUO kidney. Collectively, the data demonstrate that mast cells are critical to the development of renal fibrosis in the 14-day UUO kidney. Since renin is present in human kidney mast cells, our work identifies potential targets in the treatment of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.