These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Scientific Data | (2020) 7:94 | https://doi.org/10.1038/s41597-020-0406-x www.nature.com/scientificdata www.nature.com/scientificdata/ circum-Antarctic synthesis yet exists that crosses species boundaries. This deficiency prompted the Expert Group on Birds and Marine Mammals (EG-BAMM) and the Expert Group on Antarctic Biodiversity Informatics (EGABI) of the Scientific Committee on Antarctic Research (SCAR; www.scar.org) to initiate in 2010 the Retrospective Analysis of Antarctic Tracking Data (RAATD). RAATD aims to advance our understanding of fundamental and applied questions in a data-driven way, matching research priorities already identified by the SCAR Horizon Scan 9,21 and key questions in animal movement ecology 22 . For these reasons, we worked on the collation, validation and preparation of tracking data collected south of 45 °S. Data from over seventy contributors (Data Contacts and Citations 23 ) were collated. This database includes information from seventeen predator species, 4,060 individuals and over 2.9 million at-sea locations. To exploit this unique dataset, RAATD is undertaking a multi-species assessment of habitat use for higher predators in the Southern Ocean 24 .RAATD will provide a greater understanding of predator distributions under varying climate regimes, and provide outputs that can inform spatial management and planning decisions by management authorities such as the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR; www.ccamlr.org). Our synopsis and analysis of multi-predator tracking data will also highlight regional or seasonal data-gaps.Scientific Data | (2020) 7:94 | https://doi.
Summary1. DNA metabarcoding of food in animal scats provides a non-invasive dietary analysis method for vertebrates. A variety of molecular approaches can be used to recover dietary DNA from scats; however, many of these also recover non-food DNA. Blocking primers can be used to inhibit amplification of some non-target DNA, but this may not always be feasible, especially when multiple distinct non-target groups are present. 2. We have developed scat collection protocols to optimise the detection of food DNA in vertebrate scat samples. Using shy albatross Thalassarche cauta as a case study, we investigated how DNA amplification success and the proportion of food DNA detected are influenced by both environmental and physiological parameters. We show that both the amount and type of non-target DNA vary with sample freshness, the collection substrate, fasting period and developmental stage of the consumer. 3. Fresh scat samples yielded the highest proportion of food sequences. Collecting scats from dirt substrates reduced the proportion of food DNA and increased the proportion of contaminating DNA. Food DNA detection rates changed throughout the albatross breeding season and related to the time since feeding and the developmental stage of the animal. Fasting albatross produced scats dominated by parasite amplicons in universal PCR analysis, with little food DNA recovered. Samples from very young animals also produced reduced food DNA proportions. 4. Based on our observations, we recommend the following procedures for field scat collections to ensure highquality samples for dietary DNA metabarcoding studies. Ideally, (i) collect fresh scats; (ii) from surfaces with minimal contamination (e.g. rock or ice); (iii) collect scats from animals with minimum time since feeding and avoid fasting animals; (iv) avoid young animals that are not feeding directly (e.g. not weaned or fledged) or target larger/older individuals. The optimised field sampling protocols that we describe will improve the quality of dietary data from vertebrates by focusing on samples most likely to contain food DNA. They will also help minimise contamination issues from non-target DNA and provide standardised field methods in this rapidly expanding area of research.
Fidelity to migratory destinations is an important driver of connectivity in marine and avian species. Here we assess the role of maternally directed learning of migratory habitats, or migratory culture, on the population structure of the endangered Australian and New Zealand southern right whale. Using DNA profiles, comprising mitochondrial DNA (mtDNA) haplotypes (500 bp), microsatellite genotypes (17 loci) and sex from 128 individually-identified whales, we find significant differentiation among winter calving grounds based on both mtDNA haplotype (FST = 0.048, ΦST = 0.109, p < 0.01) and microsatellite allele frequencies (FST = 0.008, p < 0.01), consistent with long-term fidelity to calving areas. However, most genetic comparisons of calving grounds and migratory corridors were not significant, supporting the idea that whales from different calving grounds mix in migratory corridors. Furthermore, we find a significant relationship between δ13C stable isotope profiles of 66 Australian southern right whales, a proxy for feeding ground location, and both mtDNA haplotypes and kinship inferred from microsatellite-based estimators of relatedness. This indicates migratory culture may influence genetic structure on feeding grounds. This fidelity to migratory destinations is likely to influence population recovery, as long-term estimates of historical abundance derived from estimates of genetic diversity indicate the South Pacific calving grounds remain at <10% of pre-whaling abundance.
Aim Introduced predators are a global driver of species decline, but their impact on highly mobile species is poorly understood. We report the severe impact of a previously undocumented introduced predator on the endangered, migratory swift parrot (Lathamus discolor). Sugar gliders (Petaurus breviceps), a supposedly benign introduced species, were detected acting as a major opportunistic predator of cavity-nesting birds. We assessed the intensity and geographical extent of sugar glider predation and investigated whether habitat loss exacerbated predation risk to swift parrots.Location Tasmania, Australia.Methods We monitored nests of swift parrots for 3 years with motion-activated cameras. We used bioclimatic modelling to predict the potential distribution of introduced sugar gliders across the study area and assessed the predation risk to swift parrots and other threatened birds in the region using nest-survival analysis.Results Daily survival of nests in areas where sugar gliders occurred was mean 0.97, which equated to a true likelihood of 0.17 for a nest to survive the 60-day nesting period. No nests failed on an offshore island where sugar gliders were shown to be absent. Most cases (83.3%) of glider predation resulted in the death of the adult female parrot. On the Tasmanian mainland, there was a positive relationship between nest survival and increasing mature forest cover at the landscape scale.Main conclusions Predation risk varied dramatically across the breeding range of swift parrots, depending on the presence of sugar gliders. Offshore islands are an important refuge for swift parrots because sugar gliders are absent. However, islands are vulnerable, and our bioclimatic model shows that they are bioclimatically suitable for sugar gliders. Synergistic interactions between predation and habitat loss combine with low breeding-site philopatry to expose swift parrots to dramatic variation in predation risk depending on nesting location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.