Ancient Rome was the capital of an empire of ~70 million inhabitants, but little is known about the genetics of ancient Romans. Here we present 127 genomes from 29 archaeological sites in and around Rome, spanning the past 12,000 years. We observe two major prehistoric ancestry transitions: one with the introduction of farming and another prior to the Iron Age. By the founding of Rome, the genetic composition of the region approximated that of modern Mediterranean populations. During the Imperial period, Rome’s population received net immigration from the Near East, followed by an increase in genetic contributions from Europe. These ancestry shifts mirrored the geopolitical affiliations of Rome and were accompanied by marked interindividual diversity, reflecting gene flow from across the Mediterranean, Europe, and North Africa.
Key Points Question How frequently are adolescent patient portal accounts accessed by guardians? Findings In this cross-sectional study including 3429 adolescent accounts across 3 academic institutions, analysis of portal messages found that more than half of adolescent patient portal accounts with outbound messages were accessed by guardians. The percentage of accessed accounts was greater in children aged 13 to 14 years vs those aged 17 to 18 years. Meaning These findings may be useful in guiding health system approaches to protecting adolescent confidentiality when sharing health data via patient portals.
Our understanding of the human mutation rate helps us build evolutionary models and interpret patterns of genetic variation observed in human populations. Recent work indicates that the frequencies of specific polymorphism types have been elevated in Europe, and that many more, subtler signatures of global polymorphism variation may yet remain unidentified. Here, we present an analysis of the 1000 Genomes Project supported by analysis in the Simons Genome Diversity Panel, suggesting additional putative signatures of mutation rate variation across populations and the extent to which they are shaped by local sequence context. First, we compiled a list of the most significantly variable polymorphism types in a cross-continental statistical test. Clustering polymorphisms together, we observe three sets that showed distinct shared patterns of relative enrichment among ancestral populations, and we characterize each one of these putative “signatures” of polymorphism variation. For three of these signatures, we found that a single flanking base pair of sequence context was sufficient to determine the majority of enrichment or depletion of a polymorphism type. However, local genetic context up to 2–3 bp away contributes additional variability and may help to interpret a previously noted enrichment of certain polymorphism types in some East Asian groups. Moreover, considering broader local genetic context highlights patterns of polymorphism variation, which were not captured by previous approaches. Building our understanding of mutation rate in this way can help us to construct more accurate evolutionary models and better understand the mechanisms that underlie genetic change.
Observational studies often benefit from an abundance of observational units. This can lead to studies that—while challenged by issues of internal validity—have inferences derived from sample sizes substantially larger than randomized controlled trials. But is the information provided by an observational unit best used in the analysis phase? We propose the use of a “pilot design,” in which observations are expended in the design phase of the study, and the posttreatment information from these observations is used to improve study design. In modern observational studies, which are data rich but control poor, pilot designs can be used to gain information about the structure of posttreatment variation. This information can then be used to improve instrumental variable designs, propensity score matching, doubly robust estimation, and other observational study designs. We illustrate one version of a pilot design, which aims to reduce within‐set heterogeneity and improve performance in sensitivity analyses. This version of a pilot design expends observational units during the design phase to fit a prognostic model, avoiding concerns of overfitting. In addition, it enables the construction of “assignment‐control plots,” which visualize the relationship between propensity and prognostic scores. We first show some examples of these plots, then we demonstrate in a simulation setting how this alternative use of the observations can lead to gains in terms of both treatment effect estimation and sensitivity analyses of unobserved confounding.
Observational studies have shown that elevated systolic blood pressure (SBP) is associated with future onset of type 2 diabetes, but whether this association is causal is not known. We applied the Mendelian randomization framework to evaluate the causal hypothesis that elevated SBP increases risk for type 2 diabetes. We used 28 genetic variants associated with SBP and evaluated their impact on type 2 diabetes using a European-centric meta-analysis comprising 37,293 case and 125,686 control subjects. We found that elevation of SBP levels by 1 mmHg due to our genetic score was associated with a 2% increase in risk of type 2 diabetes (odds ratio 1.02, 95% CI 1.01–1.03, P = 9.05 × 10−5). To limit confounding, we constructed a second score based on 13 variants exclusively associated with SBP and found a similar increase in type 2 diabetes risk per 1 mmHg of genetic elevation in SBP (odds ratio 1.02, 95% CI 1.01–1.03, P = 1.48 × 10−3). Sensitivity analyses using multiple, alternative causal inference measures and simulation studies demonstrated consistent association, suggesting robustness of our primary observation. In line with previous reports from observational studies, we found that genetically elevated SBP was associated with increased risk for type 2 diabetes. Further work will be required to elucidate the biological mechanism and translational implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.