Researchers in many fields often need to quantify the similarity between images using metrics that measure qualities of interest in a robust quantitative manner. We present here the concept of image dimension reduction through characteristic shape sequences. We formulate the problem as a nonlinear optimization program and demonstrate the solution on a test problem of extracting maximal area ellipses from twodimensional image data. To solve the problem numerically, we augment the class of mesh adaptive direct search (MADS) algorithms with a filter, so as to allow infeasible starting points and to achieve better local solutions. Results here show that the MADS filter algorithm is successful in the test problem of finding good characteristic ellipse solutions from simple but noisy images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.