Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.
Lyme disease (LD) cases have been on the rise throughout the United States, costing the healthcare system up to $1.3 billion per year, and making LD one of the greatest threats to public health. Factors influencing the number of LD cases range from environmental to system-level variables, but little is known about the influence of vegetation (canopy, understory, and ground cover) and human behavioral risk on LD cases and exposure to infected ticks. We determined the influence of various risk factors on the risk of exposure to infected ticks on 22 different walkways using multinomial logistic regression. The model classifies the walkways into high-risk and low-risk categories with 90% accuracy, in which the understory, human risk, and number of rodents are significant indicators. These factors should be managed to control the risk of transmission of LD to humans.
The ubiquitous use of Li-ion batteries is hindered in part by limitations to achievable specific and volumetric energy. In addition to the physical constraints these properties address, they lead to higher cost per Wh. Replacing the intercalation or alloying based negative electrode leads to significant increases in both of the aforementioned energy related properties. In-situ formed or “anodeless” Li metal batteries, where Li is plated directly on the current collector, enable significant cost savings and improvement of energy of Li metal batteries relative to traditional Li metal which contain Li metal upon initial fabrication [1]. Using anodeless configurations, we imparted on an effort to investigate the deleterious capacity consuming phenomena of the plating process by electrochemically isolating the key degradation and performance limiting phenomena. Using ultra low-capacity Li metal plating (0.08mAh/cm2) in Li-metal anodeless half cells, the formation and quality of the solid electrolyte interphase (SEI) can be investigated with amplification. The solid electrolyte interphase (SEI) is a protective and passivating layer formed during the initial reduction of electrolyte. A robust SEI protects against excess electrolyte consumption and allows for subsequent stable, high efficiency cycling while being electronically resistive and ionically conductive [2]. The composition and mechanical stability of this dynamic layer influences efficiency and cycle lifetime [2]. At higher lithium plating capacities however, the influence of the SEI is not easily observed. Instead, capacity fade attributed to dendrite formation and mechanical damage to the SEI can be more easily investigated. Using higher capacity lithium plating (2.5mAh/cm2) in anodeless cell configurations, dendrite formation and capacity fade over cycle lifetime can be observed. Dendrite formation, as the result of irregular lithium deposition, can hinder the amount of active lithium available as well as lead to battery failure through short circuiting and thermal runaway [3]. In this work we have isolated the study SEI and dendrite formation electrochemically, using Li-metal and LiCoO2 counter electrode anodeless cell configurations, respectively. As a result, we developed novel non-aqueous, non-ionic liquid electrolytes that have achieved efficiency of 85% at 0.08mAh/cm2 where most of the capacity is associated with the formation of the SEI and 96% at 2.5mAh/cm2 at the more challenging initial cycles. In contrast, a standard electrolyte composition such as 1M LiPF6 EC/DMC shows poor initial efficiency of 52% at 0.08mAh/cm2 and 66% at 2.5mAh/cm2. High efficiencies were also achieved with optimized ionic liquid electrolytes. This work may provide insight into the initial stages of SEI formation and provide a systematic methodology for electrolyte optimization through SEI capacity loss and dendritic capacity fade observation. [1] S. H. Park, D. Jun, G. H. Lee, S. G. Lee, and Y. J. Lee, J. Materials Chemistry A 9 (2021) 14656-14681. [2] S. J. Park, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, Carbon 105 (2016) 52-76. [3] J. B. Goodenough, J. Solid State Electrochem. 16 (2012) 2019-2029. Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.