We present new measurements of the evolution of the galaxy stellar mass functions (GSMF) and UV luminosity functions (UV LF) for galaxies from z = 6 − 9 within the Frontier Field cluster MACSJ0416.1-2403 and its parallel field. To obtain these results, we derive the stellar masses of our sample by fitting synthetic stellar population models to their observed spectral energy distribution with the inclusion of nebular emission lines. This is the deepest and farthest in distance mass function measured to date and probes down to a level of M * = 10 6.8 M . The main result of this study is that the low-mass end of our GSMF to these limits and redshifts appears to become steeper from −1.98 +0.07 −0.07 at z = 6 to −2.38 +0.72 −0.88 at z = 9, steeper than previously observed mass functions at slightly lower redshifts, and we find no evidence of turnover in the mass range probed. We furthermore demonstrate that the UV LF for these system also appears to show a steepening at the highest redshifts, without any evidence of turnover in the luminosity range probed. Our M UV − M * relation exhibit shallower slopes than previously observed and are in accordance with a constant mass-to-light ratio. Integrating our GSMF, we find that the stellar mass density increases by a factor of ∼ 15 +21 −6 from z = 9 to z = 6. We estimate the dust-corrected star formation rates (SFRs) to calculate the specific star formation rates (sSFR = SFR/M * ) of our sample, and find that for a fixed stellar mass of 5 × 10 9 M , sSFR ∝ (1 + z) 2.01±0.16 . Finally, from our new measurements, we estimate the UV luminosity density (ρ UV ) and find that our results support a smooth decline of ρ UV towards high redshifts.
We present an investigation into the first 500 Myr of galaxy evolution from the Cosmic Evolution Early Release Science (CEERS) survey. CEERS, one of 13 JWST ERS programs, targets galaxy formation from z ∼ 0.5 to >10 using several imaging and spectroscopic modes. We make use of the first epoch of CEERS NIRCam imaging, spanning 35.5 arcmin2, to search for candidate galaxies at z > 9. Following a detailed data reduction process implementing several custom steps to produce high-quality reduced images, we perform multiband photometry across seven NIRCam broad- and medium-band (and six Hubble broadband) filters focusing on robust colors and accurate total fluxes. We measure photometric redshifts and devise a robust set of selection criteria to identify a sample of 26 galaxy candidates at z ∼ 9–16. These objects are compact with a median half-light radius of ∼0.5 kpc. We present an early estimate of the z ∼ 11 rest-frame ultraviolet (UV) luminosity function, finding that the number density of galaxies at M UV ∼ −20 appears to evolve very little from z ∼ 9 to 11. We also find that the abundance (surface density [arcmin−2]) of our candidates exceeds nearly all theoretical predictions. We explore potential implications, including that at z > 10, star formation may be dominated by top-heavy initial mass functions, which would result in an increased ratio of UV light per unit halo mass, though a complete lack of dust attenuation and/or changing star formation physics may also play a role. While spectroscopic confirmation of these sources is urgently required, our results suggest that the deeper views to come with JWST should yield prolific samples of ultrahigh-redshift galaxies with which to further explore these conclusions.
We report the discovery of a candidate galaxy with a photo-z of z ∼ 12 in the first epoch of the James Webb Space Telescope (JWST) Cosmic Evolution Early Release Science Survey. Following conservative selection criteria, we identify a source with a robust z phot = 11.8 − 0.2 + 0.3 (1σ uncertainty) with m F200W = 27.3 and ≳7σ detections in five filters. The source is not detected at λ < 1.4 μm in deep imaging from both Hubble Space Telescope (HST) and JWST and has faint ∼3σ detections in JWST F150W and HST F160W, which signal a Lyα break near the red edge of both filters, implying z ∼ 12. This object (Maisie’s Galaxy) exhibits F115W − F200W > 1.9 mag (2σ lower limit) with a blue continuum slope, resulting in 99.6% of the photo-z probability distribution function favoring z > 11. All data-quality images show no artifacts at the candidate’s position, and independent analyses consistently find a strong preference for z > 11. Its colors are inconsistent with Galactic stars, and it is resolved (r h = 340 ± 14 pc). Maisie’s Galaxy has log M */M ⊙ ∼ 8.5 and is highly star-forming (log sSFR ∼ −8.2 yr−1), with a blue rest-UV color (β ∼ −2.5) indicating little dust, though not extremely low metallicity. While the presence of this source is in tension with most predictions, it agrees with empirical extrapolations assuming UV luminosity functions that smoothly decline with increasing redshift. Should follow-up spectroscopy validate this redshift, our universe was already aglow with galaxies less than 400 Myr after the Big Bang.
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.
We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.