The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries with natural populations of S. sclerotiorum to screen new cultivars for resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within these nurseries a) reflect the genetic diversity of the populations in the surrounding region and b) are stable over time. Furthermore, previous studies have investigated the correlation between mycelial compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and white mold screening nurseries surveyed over 10 years in 2003-2012 representing 11 states in the United States of America, Australia, France, and Mexico at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely structured over space and time based on analysis of molecular variance and discriminant analysis of principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only Mexico (n=18) shared no MLHs with any other region. Using a bipartite network-based approach, we found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should continue to test dry bean lines in several white mold screening nurseries across the US to account for both the phenotypic and genotypic variation that exists across regions.
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries (wmn) with natural populations of S. sclerotiorum to screen new cultivars for resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within these nurseries (a) reflect the genetic diversity of the populations in the surrounding region and (b) are stable over time. Furthermore, previous studies have investigated the correlation between mycelial compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and wmn surveyed over 10 years in 2003–2012 representing 11 states in the United States of America, Australia, France, and Mexico at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely structured over space and time based on analysis of molecular variance and discriminant analysis of principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only Mexico (n = 18) shared no MLHs with any other region. Using a bipartite network-based approach, we found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should continue to test dry bean lines in several wmn across the United States to account for both the phenotypic and genotypic variation that exists across regions.
Sclerotinia sclerotiorum, infection of bean fields, has increased in Brazil. Fungicides application is the control strategy used due to lack of cultivars with complete disease resistance. To guide the use of isolates in resistance screening 25 S. sclerotiorum isolates from Brazilian dry bean fields were characterized using microsatellite markers, mycelial compatibility groups (MCGs) and aggressiveness. Microsatellite primer pairs were used to identify polymorphisms among the S. sclerotiorum isolates and MCGs were determined from interaction of all isolates grown sideby-side. Aggressiveness was derived from a straw test where fungal mycelium was placed over a cut bean stem and rated for disease progress. Data from microsatellite profiles grouped the 25 isolates into four clusters and seven MCGs were identified. No association among host cultivar and cluster or MCG of isolates was observed. For MCGs, 57% contained isolates sampled frequently over multiple locations and 43% contained isolates unique to locations. There were significant differences among isolates in aggressiveness within and between MCGs. The most aggressive isolates in resistance screening will be helpful in the identification of higher levels of resistance in bean germplasm/lines.
No abstract
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries with natural populations of S. sclerotiorum to screen new cultivars for resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within these nurseries a) reflect the genetic diversity of the populations in the surrounding region and b) are stable over time. Furthermore, previous studies have investigated the correlation between mycelial compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and white mold screening nurseries surveyed over 10 years in 2003–2012 representing 11 states, Mexico, France, and Australia at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely structured over space and time based on analysis of molecular variance and discriminant analysis of principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only Mexico (n=18) shared no MLHs with any other region. Using a bipartite network-based approach, we found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should continue to test dry bean lines in several white mold screening nurseries across the US to account for both the phenotypic and genotypic variation that exists across regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.