Background Crowdsourcing is a distributed problem-solving and production mechanism that leverages the collective intelligence of non-expert individuals and networked communities for specific goals. Social innovation (SI) initiatives aim to address health challenges in a sustainable manner, with a potential to strengthen health systems. They are developed by actors from different backgrounds and disciplines. This paper describes the application of crowdsourcing as a research method to explore SI initiatives in health. Methods The study explored crowdsourcing as a method to identify SI initiatives implemented in Africa, Asia and Latin America. While crowdsourcing has been used in high-income country settings, there is limited knowledge on its use, benefits and challenges in low- and middle-income country (LMIC) settings. From 2014 to 2018, six crowdsourcing contests were conducted at global, regional and national levels. Results A total of 305 eligible projects were identified; of these 38 SI initiatives in health were identified. We describe the process used to perform a crowdsourcing contest for SI, the outcome of the contests, and the challenges and opportunities when using this mechanism in LMICs. Conclusions We demonstrate that crowdsourcing is a participatory method, that is able to identify bottom-up or grassroots SI initiatives developed by non-traditional actors.
Background: In March 2020 the South African COVID-19 Modelling Consortium was formed to support government planning for COVID-19 cases and related healthcare. Models were developed jointly by local disease modelling groups to estimate cases, resource needs and deaths due to COVID-19. Methods: The National COVID-19 Epi Model (NCEM) while initially developed as a deterministic compartmental model of SARS-Cov-2 transmission in the nine provinces of South Africa, was adapted several times over the course of the first wave of infection in response to emerging local data and changing needs of government. By the end of the first wave, the NCEM had developed into a stochastic, spatially-explicit compartmental transmission model to estimate the total and reported incidence of COVID-19 across the 52 districts of South Africa. The model adopted a generalised Susceptible-Exposed-Infectious-Removed structure that accounted for the clinical profile of SARS-COV-2 (asymptomatic, mild, severe and critical cases) and avenues of treatment access (outpatient, and hospitalisation in non-ICU and ICU wards). Results: Between end-March and early September 2020, the model was updated several times to generate new sets of projections and scenario analyses to be shared with planners in the national and provincial Departments of Health, the National Treasury and other partners in a variety of formats such as presentations, reports and dashboards. Updates to model structure included finer spatial granularity, limited access to treatment, and the inclusion of behavioural heterogeneity in relation to the adoption of Public Health and Social Measures. These updates were made in response to local data and knowledge and the changing needs of the planners. Conclusions: The NCEM attempted to incorporate a high level of local data to contextualise the model appropriately to address South Africa’s population and health system characteristics. Origin and contextualisation of data and understanding of the population’s interaction with the health system played a vital role in producing and updating estimates of resource needs, demonstrating the importance of harnessing and developing local modelling capacity.
Background The South African COVID-19 Modelling Consortium (SACMC) was established in late March 2020 to support planning and budgeting for COVID-19 related healthcare in South Africa. We developed several tools in response to the needs of decision makers in the different stages of the epidemic, allowing the South African government to plan several months ahead of time. Methods Our tools included epidemic projection models, several cost and budget impact models, and online dashboards to help government and the public visualise our projections, track case development and forecast hospital admissions. Information on new variants, including Delta and Omicron, were incorporated in real time to allow the shifting of scarce resources when necessary. Results Given the rapidly changing nature of the outbreak globally and in South Africa, the model projections were updated regularly. The updates reflected 1) the changing policy priorities over the course of the epidemic; 2) the availability of new data from South African data systems; and 3) the evolving response to COVID-19 in South Africa such as changes in lockdown levels and ensuing mobility and contact rates, testing and contact tracing strategies, and hospitalisation criteria. Insights into population behaviour required updates by incorporating notions of behavioural heterogeneity and behavioural responses to observed changes in mortality. We incorporated these aspects into developing scenarios for the third wave and developed additional methodology that allowed us to forecast required inpatient capacity. Finally, real-time analyses of the most important characteristics of the Omicron variant first identified in South Africa in November 2021 allowed us to advise policymakers early in the fourth wave that a relatively lower admission rate was likely. Conclusion The SACMC’s models, developed rapidly in an emergency setting and regularly updated with local data, supported national and provincial government to plan several months ahead of time, expand hospital capacity when needed, allocate budgets, and procure additional resources where possible. Across four waves of COVID-19 cases, the SACMC continued to serve the planning needs of the government, tracking waves and supporting the national vaccine rollout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.