A subset of eukaryotic tRNAs is methylated in the anticodon loop to form the 3-methylcytosine (m3C) modification. In mammals, the number of tRNAs containing m3C has expanded to include mitochondrial (mt) tRNA-Ser-UGA and mt-tRNA-Thr-UGU. Whereas the enzymes catalyzing m3C formation in nuclear- encoded cytoplasmic tRNAs have been identified, the proteins responsible for m3C modification in mt- tRNAs are unknown. Here, we show that m3C formation in human mt-tRNAs is dependent upon the Methyltransferase-Like 8 (METTL8) enzyme. We find that METTL8 is a mitochondria-associated protein that interacts with mitochondrial seryl-tRNA synthetase along with mt-tRNAs containing m3C. Human cells deficient in METTL8 exhibit loss of m3C modification in mt-tRNAs but not nuclear-encoded tRNAs. Consistent with the mitochondrial import of METTL8, the formation of m3C in METTL8-deficient cells can be rescued by re-expression of wildtype METTL8 but not by a METTL8 variant lacking the N-terminal mitochondrial localization signal. Notably, METTL8-deficiency in human cells causes alterations in the native migration pattern of mt-tRNA-Ser-UGA suggesting a role for m3C in tRNA folding. Altogether, these findings demonstrate that METTL8 is required for m3C formation in mitochondrial tRNAs and uncover a potential role for m3C modification in mitochondrial tRNA structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.