Mutations in the coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) gene have been associated with a large clinical spectrum including myopathy, cardiomyopathy and amyotrophic lateral sclerosis (ALS). Herein, we analyzed the metabolic changes induced by the p.S59L CHCHD10 mutation to identify new therapeutic opportunities. Using metabolomic, lipidomic and proteomic analysis we observed a strong alteration of metabolism in plasma and heart of Chchd10S59L/+ mice compared to their wild type littermates at pre-symptomatic and symptomatic stages. In plasma, levels of phospholipids were decreased while those of carnitine derivatives and most of amino acids were increased. The cardiac tissue from Chchd10S59L/+ mice showed a decreased Oxidative Phosphorylation (OXPHOS) and beta-oxidation proteins levels as well as tricarboxylic acid cycle (TCA) intermediates and carnitine pathway metabolism. In parallel, lipidomics analysis reveals a drastic change in the lipidome, including triglycerides, cardiolipin and phospholipids. Consistent with this energetic deficiency in cardiac tissue, we show that L-acetylcarnitine supplementation improves the mitochondrial network length in IPS-derived cardiomyocytes from a patient carrying the CHCHD10S59L/+ mutation. These data indicate that a bioenergetic intermediate such as L-acetylcarnitine may restore mitochondrial function in CHCHD10-related disease, due to the reduction in energy deficit that could be compensated by carnitine metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.