Alpha/beta-hydrolase domain 6 (ABHD6) is a novel 2-arachidonoylglycerol (2-AG) hydrolytic enzyme, that can fine-tune the endocannabinoid signaling in the central nervous system. Recently we and others have demonstrated the protective effect of ABHD6 inhibition in the animal models of traumatic brain injury and epileptic seizures. In this study, we investigated the role of targeting ABHD6 in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Post-symptom treatment with an ABHD6 inhibitor WWL70 increased the brain levels of 2-AG and ameliorated the clinical signs of EAE, T cells infiltration, microglia activation and the expression of activated leukocyte cell adhesion molecules. The production of iNOS, COX-2, TNF-α and IL-1β and the phosphorylation of NF-κB were also significantly reduced by WWL70 treatment. The neuroprotective effect of WWL70 was demonstrated by increased survival of mature oligodendrocytes, reduced demyelination and axonal loss in WWL70 treated EAE mouse spinal cord. The therapeutic effect of WWL70 on EAE was absent by co-administration of CB2 receptor antagonist, but not CB1 receptor antagonist. Consistently, WWL70 did not afford any protection in CB2 receptor knockout mice after EAE induction. Given the increased expression of ABHD6 in microglia/macrophages, but not in T cells, we speculated that inhibition of ABHD6 might enhance 2-AG signaling particularly in microglia/macrophages to exert anti-inflammatory effects via activation of CB2 receptors. These results suggest that inhibition of ABHD6 might be used as an ideal strategy for the treatment of MS and other neurodegenerative diseases.
BackgroundExcessive production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) in reactive microglia is a major contributor to initiation/exacerbation of inflammatory and degenerative neurological diseases. Previous studies have indicated that activation of protein kinase C (PKC) can lead to iNOS induction. Because of the existence of various PKC isoforms and the ambiguous specificity of PKC inhibitors, it is unclear whether all PKC isoforms or a specific subset are involved in the expression of iNOS by reactive microglia. In this study, we employed molecular approaches to characterize the role of each specific PKC isoform in the regulation of iNOS expression in murine microglia.MethodsInduction of iNOS in response to bacterial endotoxin lipopolysaccharide (LPS) was measured in BV-2 murine microglia treated with class-specific PKC inhibitors, or transfected with siRNA to silence specific PKC isoforms. iNOS expression and MAPK phosphorylation were evaluated by western blot. The role of NF-κB in activated microglia was examined by determining NF-κB transcriptional response element- (TRE-) driven, promoter-mediated luciferase activity.ResultsMurine microglia expressed high levels of nPKCs, and expressed relatively low levels of cPKCs and aPKCs. All PKC inhibitors attenuated induction of iNOS in LPS-activated microglia. Knockdown of PKC δ and PKC β attenuated ERK1/2 and p38 phosphorylation, respectively, and blocked NF-κB activation that leads to the expression of iNOS in reactive microglia.ConclusionsOur results identify PKC δ and β as the major PKC isoforms regulating iNOS expression in reactive microglia. The signaling pathways mediated by PKC involve phosphorylation of distinct MAPKs and activation of NF-κB. These results may help in the design of novel and selective PKC inhibitors for the treatment of many inflammatory and neurological diseases in which production of NO plays a pathogenic role.
Melatonin and N-acetylserotonin (NAS) are tryptophan metabolites that have potent anti-oxidant, anti-inflammatory and neuroprotective properties in several animal models of neurological injury and disease including multiple sclerosis (MS). The therapeutic effect of NAS has not been reported previously in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS. Using a MOG-peptide induced EAE mouse model we examined the effects of melatonin and NAS on clinical score, inflammatory markers, free radical generation, and sparing of axons, oligodendrocytes and myelin. We found that NAS and melatonin reduced clinical scores when administered prior to or after symptom onset. This effect was more pronounced when melatonin and NAS were administrated prior to symptom onset whereby the appearance of motor symptoms was significantly delayed. Activated microglia and CD4 T-cells were increased in the white matter of untreated EAE mice, with a return to near control levels after melatonin or NAS treatment. The expression of the NADPH oxidase component p67phox and inducible nitric oxide synthase (iNOS) was increased in the EAE mice as compared with controls, and both drug treated groups had significant reductions in their expression. Melatonin and NAS treatment significantly reduced the loss of mature oligodendrocytes, demyelination and axonal injury. Both compounds also significantly attenuated iNOS induction and reactive oxygen species (ROS) generation in lipopolysaccharide-activated microglia in culture. Our results show for the first time the therapeutic effects of NAS and confirm previous reports on the effectiveness of melatonin in the EAE model of MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.