Bacterial DNA triggers B-cell proliferation and induces immunoglobulin secretion. Chromatin-IgG complexes activate autoreactive B cells by co-engaging B-cell receptor (BCR) and TLR-9, thus suggesting a role for innate signaling in systemic autoimmunity. Spleen cells from lupus prone Palmerston North (PN) mice produce several fold less IL-12p40 than controls in response to CpG-oligodeoxynucleotides (ODNs). Here we show that B cells are primarily responsible for this abnormality. The removal of B cells from PN cultures markedly increased IL-12p40. Moreover, the addition of purified B cells back to PN splenocyte cultures resulted in a B-cell number dependent/ IL-10-mediated suppression of IL-12p40. The B cells were the major source of IL-10. In response to CpG, B cells from several lupus strains produced twice as a much IL-10 as controls, but failed to produce IL-10 when stimulated through BCR or CD40. PN and control mice expressed IL-10R similarly, and the difference in IL-10 secretion remained when anti-IL-10R blocking antibodies were used. IFN-gamma and IL-4 regulated CpG-induced IL-10 secretion in opposite directions. The abnormal IL-10 response in lupus mice was derived from B cells with the marginal zone phenotype, and could be downregulated with inhibitory ODNs. We hypothesize that TLR-9 activated lupus B cells can modulate T-cell mediated inflammatory responses through IL-10 production. Therefore, B cells may contribute to the lupus pathogenesis in many different ways: as antigen-presenting cells for self antigens, as effector cells for autoantibody production, and as IL-10 secreting regulatory cells.
Several types of CpG-oligodeoxynucleotides (ODN) have been recently characterized. In mice, type A(D) CpG-ODNs primarily stimulate macrophages and dendritic cells, but fail to stimulate B cells. On the contrary, type B(K) CpG-ODNs are excellent B cell activators. Type C CpG-ODNs combine features of both types A(D) and B(K) CpG-ODNs. Despite cell type preferences, all CpG-ODNs require the presence of TLR9 for activation. In this study, we show that a subset of B cells from lupus mice responds to type A(D) CpG-ODN stimulation vigorously and directly with increased CD25 and CD86 expression and IL-10 secretion. Furthermore, these CpG-ODNs induce high surface IgM expression and promote 50- to 100-fold higher IgM and IgG3 secretion in lupus B cells than in controls. This response is similar to that seen with bacterial DNA stimulation of B cells. Type A(D)-responsive cells are enriched within lupus B cells with the marginal zone (MZ) phenotype. These cells are at least twice more numerous in lupus mice than in controls. The ability of lupus B cells to respond to type A(D) CpG-ODN stimulation is not due to differential TLR9 expression. Therefore, type A(D) CpG-ODNs may contribute to the lupus pathogenesis by inducing MZ-B cell activation, costimulatory molecule expression, and polyclonal Ig secretion. Through increased IL-10 secretion, MZ-B cells may also modify the activity of other cell types, particularly dendritic cells and macrophages.
Topical application of MI-S on skin lesions was also not effective, but cutaneously infected mice treated orally with MI-S had significantly reduced disease scores (P < 0.05) after day 9, suggesting that healing was accelerated. Vaginal administration of MI-S 20 min before viral challenge reduced the mean disease scores on days 5 to 9 (P < 0.05), viral titers on day 1 (P < 0.05), and mortality (P < 0.0001) in comparison to the control groups (untreated and vehicle treated). These results show that MI-S may be useful as an oral agent to reduce the severity of HSV cutaneous and mucosal lesions and, more importantly, as a microbicide to block sexual transmission of HSV-2 genital infections.
Mouse follicular B cells express TLR9 and respond vigorously to stimulation with singlestranded CpG-oligodeoxynucleotides (ODN). Surprisingly, follicular B cells do not respond to direct stimulation with other TLR9 ligands, such as bacterial DNA or class A(D) CpG-ODN capable of forming higher-order structures, unless other cell types are present. Here, we show that priming with interferons or with B cell-activating factor, or simultaneous co-engagement of the B cell receptor for antigen (BCR), can overcome this unresponsiveness. The effect of interferons occurs at the transcriptional level and is mediated through an autocrine/paracrine loop, which is dependent on IRF-1, IL-6 and IL-12 p40. We hypothesize that the lack of bystander activation of follicular B cells with more complex CpG ligands may be an important safety mechanism for avoiding autoimmunity. This will prevent resting B cells from responding to foreign or selfderived hypomethylated double-stranded CpG ligands unless these ligands are either delivered through the B cell receptor or under conditions where B cells are simultaneously co-engaged by activated plasmacytoid dendritic cells or TH1 cells. A corollary is that the heightened responsiveness of lupus B cells to TLR9-induced stimulation cannot be ascribed to unprimed follicular B cells, but is rather mediated by hypersensitive marginal zone B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.