The deterioration in immune function with aging is thought to make a major contribution to the increased morbidity and mortality from infectious disease in old age. One aspect of immune senescence is the reduction in CD8 T cell repertoire as due to the accumulation of oligoclonal, memory T cells and a reduction in the naive T cell pool. CD8 T cell clonal expansions accumulate with age, but their antigenic specificity remains unknown. In this study, we show that in elderly individuals seropositivity for human CMV leads to the development of oligoclonal populations of CMV-specific CTL that can constitute up to one-quarter of the total CD8 T cell population. Furthermore, CMV-specific CTL have a highly polarized membrane phenotype that is typical of effector memory cells (CD28−, CD57+, CCR7−). TCR analyses show that CMV-specific CTL have highly restricted clonality with greater restriction in the larger expansions. Clonal analysis of the total CD8 T cell repertoire was compared between CMV-seropositive and CMV-seronegative donors. Thirty-three percent more clonal expansions were observed in CMV-seropositive donors in comparison with seronegative individuals. These data implicate CMV as a major factor in driving oligoclonal expansions in old age. Such a dramatic accumulation of virus-specific effector CTL might impair the ability to respond to heterologous infection and may underlie the negative influence of CMV seropositivity on survival in the very elderly.
SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3–11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.
Immune function in the elderly is associated with a number of phenotypic and functional abnormalities, and this phenomenon of immune senescence is associated with increased susceptibility to infection. The immune response to pathogens frequently declines with age, but the CD8 ؉ T-cell response to cytomegalovirus (CMV) is unusual, as it demonstrates a significant expansion over time. Here we have documented the CD4 ؉ T-cell immune response to CMV in healthy donors of different ages. The magnitude of the CMV-specific CD4 ؉ T-cell immune response increases from a mean of 2.2% of the CD4 ؉ T-cell pool in donors below 50 years of age to 4.7% in donors aged over 65 years. In addition, CMV-specific CD4 ؉ T cells in elderly donors demonstrate decreased production of interleukin-2 and less dependence on costimulation. CMV seropositivity is associated with marked changes in the phenotype of the overall CD4؉ T-cell repertoire in healthy aged donors, including an increase in CD57؉ expression and a decrease in CD28 and CD27 expression, a phenotypic profile characteristic of immune senescence. This memory inflation of CMV-specific CD4 ؉ T cells contributes to evidence that CMV infection may be damaging to immune function in elderly individuals.Healthy aging is associated with the development of a number of phenotypic and functional abnormalities of the immune system. These include the accumulation of memory T cells, impaired functional responses in vitro, and a reduction in the response rate to vaccinations (5, 8). These findings are associated with the phenomenon of immune senescence and are thought to underlie the increased rate of infectious disease that is seen in elderly individuals (7).The magnitude of the cellular immune response to a number of pathogens has been studied in donors of different ages and has revealed that cellular immunity to viruses such as influenza virus and varicella-zoster virus decreases with advancing age (3). In marked contrast to these findings, the CD8 T-cell response to cytomegalovirus (CMV) increases markedly with age, such that it may represent over 40% of the CD8 ϩ T-cell pool (14,15). A similar observation has been seen with the CD8 T-cell immune response to murine cytomegalovirus (13). There has been speculation that this accumulation of memory CD8 T cells may itself contribute to features of immune senescence, and this idea has gained support from studies of elderly donors in whom CMV seropositivity is associated with the development of an immunological phenotype associated with impaired survival (16,29).CD4 T cells are important in the induction and regulation of the cellular immune response to pathogens, and an impaired CMV-specific CD4 T-cell immune response has been correlated with prolonged viral secretion following neonatal infection (10). Currently little is known with regard to how the magnitude or functional properties of the CD4 T-cell immune response to CMV are influenced by aging. Here we have studied the CMV-specific CD4 T-cell response to CMV viral lysate in a cohort of 30 ...
B-cell chronic lymphocytic leukaemia (CLL) is associated with immunosuppression and patients are at increased clinical risk following SARS-CoV-2 infection. Covid-19 vaccines offer the potential for protection against severe infection but relatively little is known regarding the profile of the antibody response following first or second vaccination. We studied spike-specific antibody responses following first and/or second Covid-19 vaccination in 299 patients with CLL compared with healthy donors. 286 patients underwent extended interval (10–12 week) vaccination. 154 patients received the BNT162b2 mRNA vaccine and 145 patients received ChAdOx1. Blood samples were taken either by venepuncture or as dried blood spots on filter paper. Spike-specific antibody responses were detectable in 34% of patients with CLL after one vaccine (n = 267) compared to 94% in healthy donors with antibody titres 104-fold lower in the patient group. Antibody responses increased to 75% after second vaccine (n = 55), compared to 100% in healthy donors, although titres remained lower. Multivariate analysis showed that current treatment with BTK inhibitors or IgA deficiency were independently associated with failure to generate an antibody response after the second vaccine. This work supports the need for optimisation of vaccination strategy in patients with CLL including the potential utility of booster vaccines.
Replication of human cytomegalovirus is controlled by a vigorous CD8 T cell response. The persistent nature of infection is believed to periodically stimulate T cell responses resulting in considerable expansions of virus-specific CD8 T cells over time. In this study, we describe the magnitude and breadth of CD8 T cell responses against the immunodominant viral Ags, IE-1 and pp65, in acute and long-term infection using the IFN-γ ELISPOT assay. Simultaneously, we have identified several novel MHC class I restricted CD8 T cell epitopes. Acute phase responses in immunocompetent donors appear to be extremely focused as early as 1 week post diagnosis with dominant peptide-specific responses observed against both proteins. These dominant responses remain detectable at all later time points over a 4-year follow-up. Interestingly the IE-1 responses show an increase over time whereas the pp65 responses do not, which contrasts with data showing that responses against both Ags are elevated in elderly individuals. We also observe the rapid emergence of an effector memory phenotype for virus-specific CD8 T cells as observed in persistent infection. Over time the revertant CD45RApos effector cell population is also expanded, and this is more evident in the preferentially expanded IE-1 responses. We postulate that periodic low-level virus reactivation after the acute infection phase preferentially stimulates these responses whereas pp65-specific T cell expansions probably occur during the infrequent episodes of lytic viral replication or secondary infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.