DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the Mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of Mycoplasma agalactiae , an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.
DNA methylation plays an important role in the biology of bacteria. Often associated with restriction-modification (RM) systems, they also provide a defence against foreign DNA. Little is known regarding the methylome of the mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, single molecule real-time (SMRT) and bisulphite sequencing combined with whole-genome analysis identified 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems in Mycoplasma agalactiae, a ruminant pathogen and a model organism. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenome landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.