Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. In this paper, we propose an extension to the independent cascade model that incorporates the emergence and propagation of negative opinions. The new model has an explicit parameter called quality factor to model the natural behavior of people turning negative to a product due to product defects. Our model incorporates negativity bias (negative opinions usually dominate over positive opinions) commonly acknowledged in the social psychology literature. The model maintains some nice properties such as submodularity, which allows a greedy approximation algorithm for maximizing positive influence within a ratio of 1 − 1/e. We define a quality sensitivity ratio (qs-ratio) of influence graphs and show a tight bound of Θ( n/k) on the qs-ratio, where n is the number of nodes in the network and k is the number of seeds selected, which indicates that seed selection is sensitive to the quality factor for general graphs. We design an efficient algorithm to com- * Author affiliations and emails: W. pute influence in tree structures, which is nontrivial due to the negativity bias in the model. We use this algorithm as the core to build a heuristic algorithm for influence maximization for general graphs. Through simulations, we show that our heuristic algorithm has matching influence with a standard greedy approximation algorithm while being orders of magnitude faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.