Purpose: High-risk neuroblastoma is characterized by poor survival rates, and the development of improved therapeutic approaches is a priority. Temozolomide and topotecan show promising clinical activity against neuroblastoma. Poly(ADP-ribose) polymerase-1 (PARP-1) promotes DNA repair and cell survival following genotoxic insult; we postulated that its inhibition may enhance the efficacy of these DNA-damaging drugs in pediatric cancers. Experimental Design: We evaluated the chemosensitizing properties of the PARP inhibitor AG014699 (Pfizer, Inc.) in combination with temozolomide and topotecan, against human neuroblastoma cells and xenografts, alongside associated pharmacologic and toxicologic indices. Results: Addition of PARP-inhibitory concentrations of AG014699 significantly potentiated growth inhibition by both topotecan (1.5-to 2.3-fold) and temozolomide (3-to 10-fold) in vitro, with equivalent effects confirmed in clonogenic assays. In two independent in vivo models (NB1691 and SHSY5Y xenografts), temozolomide caused a xenograft growth delay, which was enhanced by co-administration of AG014699, and resulted in complete and sustained tumor regression in the majority (6 of 10; 60%) of cases. Evidence of enhanced growth delay by topotecan/AG014699 co-administration was observed in NB1691 xenografts. AG014699 metabolites distributed rapidly into the plasma (C max , 1.2-1.9 nmol/L at 30 min) and accumulated in xenograft tissues (C max ,1-2 Amol/L at 120 min), associated with a sustained suppression of PARP-1enzyme activity. Doses of AG014699 required for potentiation were not toxic per se. Conclusions: These data show enhancement of temozolomide and topotecan efficacy by PARP inhibition in neuroblastoma. Coupled with the acceptable pharmacokinetic, pharmacodynamic, and toxicity profiles of AG014699, our findings provide strong rationale for investigation of PARP inhibitors in pediatric early clinical studies.
Background:Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain tumour. Poly(ADP-ribose) polymerase (PARP) inhibitors enhance temozolomide activity in extracranial adult and paediatric human malignancies.Methods:We assessed the effect of AG-014699, a clinically active PARP inhibitor, on temozolomide-induced growth inhibition in human medulloblastoma models. Pharmacokinetic, pharmacodynamic and toxicity assays were performed in tumour-bearing mice.Results:Sensitivity to temozolomide in vitro was consistent with methylguanine methyltransferase (MGMT) and DNA mismatch repair (MMR) status; MGMT+ MMR+ D384Med cells (temozolomide GI50=220 μ), representative of most primary medulloblastomas, were sensitised fourfold by AG-014699; MGMT− MMR+ D425Med cells were hypersensitive (GI50=9 μ) and not sensitised by AG-014699, whereas MGMT+ MMR− temozolomide-resistant D283Med cells (GI50=807 μ) were sensitised 20-fold. In xenograft models, co-administration of AG-014699 produced an increase in temozolomide-induced tumour growth delay in D384Med xenografts. Consistent with the in vitro data, temozolomide caused complete tumour regressions of D425Med xenografts, whereas D283Med xenografts were relatively resistant. AG-014699 was not toxic, accumulated and reduced PARP activity ⩾75% in xenograft and brain tissues.Conclusion:We show for the first time central nervous system penetration and inhibition of brain PARP activity by AG-014699. Taken together with our in vitro chemosensitisation and toxicity data, these findings support further evaluation of the clinical potential of AG-014699–temozolomide combinations in intra-cranial malignancies.
Objectives MRI remains the preferred imaging investigation for glioblastoma. Appropriate and timely neuroimaging in the follow-up period is considered to be important in making management decisions. There is a paucity of evidence-based information in current UK, European and international guidelines regarding the optimal timing and type of neuroimaging following initial neurosurgical treatment. This study assessed the current imaging practices amongst UK neuro-oncology centres, thus providing baseline data and informing future practice. Methods The lead neuro-oncologist, neuroradiologist and neurosurgeon from every UK neuro-oncology centre were invited to complete an online survey. Participants were asked about current and ideal imaging practices following initial treatment. Results Ninety-two participants from all 31 neuro-oncology centres completed the survey (100% response rate). Most centres routinely performed an early post-operative MRI (87%, 27/31), whereas only a third performed a pre-radiotherapy MRI (32%, 10/31). The number and timing of scans routinely performed during adjuvant TMZ treatment varied widely between centres. At the end of the adjuvant period, most centres performed an MRI (71%, 22/31), followed by monitoring scans at 3 monthly intervals (81%, 25/31). Additional short-interval imaging was carried out in cases of possible pseudoprogression in most centres (71%, 22/31). Routine use of advanced imaging was infrequent; however, the addition of advanced sequences was the most popular suggestion for ideal imaging practice, followed by changes in the timing of EPMRI. Conclusion Variations in neuroimaging practices exist after initial glioblastoma treatment within the UK. Multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment. Key Points • Variations in imaging practices exist in the frequency, timing and type of interval neuroimaging after initial treatment of glioblastoma within the UK. • Large, multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment.
Antiangiogenic therapy based on blocking the actions of vascular endothelial growth factor‐A (VEGF) can lead to “normalization” of blood vessels in both animal and human tumors. Differential expression of VEGF isoforms affects tumor vascular maturity, which could influence the normalization process and response to subsequent treatment. Fibrosarcoma cells expressing only VEGF120 or VEGF188 isoforms were implanted either subcutaneously (s.c.) or in dorsal skin‐fold “window” chambers in SCID mice. VEGF120 was associated with vascular fragility and hemorrhage. Tumor‐bearing mice were treated with repeat doses of SU5416, an indolinone receptor tyrosine kinase inhibitor with activity against VEGFR‐2 and proven preclinical ability to induce tumor vascular normalization. SU5416 reduced vascularization in s.c. implants of both VEGF120 and VEGF188 tumors. However, in the window chamber, SU5416 treatment increased red cell velocity in VEGF120 (representing vascular normalization) but not VEGF188 tumors. SU5416 treatment had no effect on growth or necrosis levels in either tumor type but tended to counteract the increase in interstitial fluid pressure seen with growth of VEGF120 tumors. SU5416 pretreatment resulted in the normally fragile blood vessels in VEGF120‐expressing tumors becoming resistant to the vascular damaging effects of the tubulin‐binding vascular disrupting agent (VDA), combretastatin A4 3‐O‐phosphate (CA4P). Thus, vascular normalization induced by antiangiogenic treatment can reduce the efficacy of subsequent VDA treatment. Expression of VEGF120 made tumors particularly susceptible to vascular normalization by SU5416, which in turn made them resistant to CA4P. Therefore, VEGF isoform expression may be useful for predicting response to both antiangiogenic and vascular‐disrupting therapy.
Background We report patient characteristics, treatment pattern and one-year clinical outcome of nonvalvular atrial fibrillation (NVAF) from Kerala, India. This cohort forms part of Kerala Atrial Fibrillation (KERALA-AF) registry which is an ongoing large prospective study. Methods KERALA-AF registry collected data of adults with previously or newly diagnosed atrial fibrillation (AF) during April 2016 to April 2017. A total of 3421 patients were recruited from 53 hospitals across Kerala state. We analysed one-year follow-up outcome of 2507 patients with NVAF. Results Mean age at recruitment was 67.2 years (range 18–98) and 54.8% were males. Main co-morbidities were hypertension (61.2%), hyperlipidaemia (46.2%) and diabetes mellitus (37.2%). Major co-existing diseases were chronic kidney disease (42.1%), coronary artery disease (41.6%), and chronic heart failure (26.4%). Mean CHA 2 DS 2 -VASc score was 3.18 (SD ± 1.7) and HAS-BLED score, 1.84 (SD ± 1.3). At baseline, use of oral anticoagulants (OAC) was 38.6% and antiplatelets 32.7%. On one-month follow-up use of OAC increased to 65.8% and antiplatelets to 48.3%. One-year all-cause mortality was 16.48 and hospitalization 20.65 per 100 person years. The main causes of death were cardiovascular (75.0%), stroke (13.1%) and others (11.9%). The major causes of hospitalizations were acute coronary syndrome (35.0%), followed by arrhythmia (29.5%) and heart failure (8.4%). Conclusions Despite high risk profile of patients in this registry, use of OAC was suboptimal, whereas antiplatelets were used in nearly half of patients. A relatively high rate of annual mortality and hospitalization was observed in patients with NVAF in Kerala AF Registry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.