Background In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov ( NCT04381936 ). Findings Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding UK Research and Innovation (Medical Research Council) and National Institute of Health Research.
This review offers a critical analysis of the state of the art of medical microbubbles and their application in therapeutic delivery and monitoring. When driven by an ultrasonic pulse, these small gas bubbles oscillate with a wall velocity on the order of tens to hundreds of meters per second and can be deflected to a vessel wall or fragmented into particles on the order of nanometers. While single-session molecular imaging of multiple targets is difficult with affinity-based strategies employed in some other imaging modalities, microbubble fragmentation facilitates such studies. Similarly, a focused ultrasound beam can be used to disrupt delivery vehicles and blood vessel walls, offering the opportunity to locally deliver a drug or gene. Clinical translation of these vehicles will require that current challenges be overcome, where these challenges include rapid clearance and low payload. The technology, early successes with drug and gene delivery, and potential clinical applications are reviewed.
Background: Tracheobronchomalacia is diagnosed in people by documentation of a reduction in airway diameter during bronchoscopy. While tracheal collapse in the dog has been well described in the literature, little information is available on bronchomalacia in the dog.Hypotheses: Bronchomalacia is common in dogs with tracheal collapse, is associated with inflammatory airway disease, and is poorly documented radiographically.Animals: One hundred and fifteen dogs admitted for evaluation for respiratory disease and examined by bronchoscopy. Methods: Case-controlled, observational study. Dogs examined and having a bronchoscopic procedure performed by a single operator were separated into groups with and without visually identified airway collapse. Clinical parameters and bronchoalveolar lavage findings were compared between groups. Radiographs were reviewed in masked fashion to assess the sensitivity and specificity for detection of bronchomalacia.Results: Tracheobronchomalacia was documented in 50% of dogs examined, with tracheal collapse in 21% and bronchomalacia in 47%. In dogs with bronchomalacia, collapse of the right middle (59%) and left cranial (52%) lung lobes was identified most commonly. Dogs with bronchomalacia were significantly more likely to display normal airway cytology and to have mitral regurgitation and cardiomegaly than dogs without airway collapse (P o .05). Radiographs were insensitive for detection of airway collapse.Conclusions and Clinical Importance: Bronchomalacia was identified more commonly than tracheal collapse in this population of dogs, and documentation required bronchoscopy. This study could not confirm a role for airway inflammation in bronchomalacia, and further studies are required to determine the role of cardiomegaly in the disorder.
SignificanceChondrodystrophy, characterized by short limbs and intervertebral disc disease (IVDD), is a common phenotype in many of the most popular dog breeds, including the dachshund, beagle, and French bulldog. Here, we report the identification of a FGF4 retrogene insertion on chromosome 12, the second FGF4 retrogene reported in the dog, as responsible for chondrodystrophy and IVDD. Identification of the causative mutation for IVDD will impact an incredibly large proportion of the dog population and provides a model for IVDD in humans, as FGF-associated mutations are responsible for IVDD and short stature in human achondroplasia. This is a report of a second retrogene copy of the same parental gene, each causing complementary disease phenotypes in a mammalian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.