SUMMARY The aim of this study was to examine the effects of cellular hypoxia, and the contribution of anaerobic metabolism, on respiratory activity in bullfrogs at different stages of development. Respiratory-related neural activity was recorded from cranial nerve rootlets in isolated brainstem preparations from pre-metamorphic (Taylor–Köllros (T-K) stages VIII-XVI) and postmetamorphic tadpoles (T-K stages XXIV-XXV) and adults. Changes in fictive gill/lung activity in brainstems from pre-metamorphic tadpoles and lung activity in postmetamorphic tadpoles and adults were examined during superfusion with control (98% O2/2% CO2) or hypoxic (98%N2/2% CO2) artificial cerebrospinal fluid (aCSF). Iodoacetate (IAA; 100 μmol l–1) was used in conjunction with hypoxic aCSF to inhibit glycolysis. Gill burst frequency in pre-metamorphic brainstems did not change over a 3 h exposure to hypoxia and fictive lung burst frequency slowed significantly, but only after 3 h hypoxia. Blockade of glycolysis with IAA during hypoxia significantly reduced the time respiratory activity could be maintained in pre-metamorphic, but not in adult,brainstems. In brainstems from post-metamorphic tadpoles and adults, lung burst frequency became significantly more episodic within 5–15 min hypoxic exposure, but respiratory neural activity was subsequently abolished in every preparation. The cessation of fictive breathing was restored to control levels upon reoxygenation. Neither tadpole nor adult brainstems exhibited changes in neural bursts resembling `gasping' that is observed in mammalian brainstems exposed to severe hypoxia. There was also a significant increase in the frequency of `non-respiratory' bursts in hypoxic postmetamorphic and adult brainstems, but not in pre-metamorphic brainstems. These results indicate that pre-metamorphic tadpoles are capable of maintaining respiratory activity for 3 h or more during severe hypoxia and rely to a great extent upon anaerobic metabolism to maintain respiratory motor output. Upon metamorphosis, however, hypoxia results in significant changes in respiratory frequency and pattern, including increased lung burst episodes,non-ventilatory bursts and a reversible cessation of respiratory activity. Adults have little or no ability to maintain respiratory activity through glycolysis but, instead, stop respiratory activity until oxygen is available. This `switch' in the respiratory response to hypoxia coincides morphologically with the loss of gills and obligate air-breathing in the postmetamorphic frog. We hypothesize that the cessation of respiratory activity in post-metamorphic tadpoles and adults is an adaptive, energy-saving response to low oxygen.
This study examined the direct effects of tricaine methanesulfonate (MS-222), a sodium-channel blocking local anesthetic, on respiratory motor output using an in vitro brain stem preparation of adult North American bullfrogs (Rana catesbeiana). Bullfrogs were anesthetized with halothane, and the brain stem was removed and superfused with artificial cerebrospinal fluid containing MS-222 at concentrations ranging from 0.1 to 1,000 micro M. At the lowest concentration of MS-222, respiratory frequency (fR) increased significantly (P < 0.05), but at higher concentrations, fR progressively decreased and was abolished in all preparations at 1,000 micro M (P < 0.01). Respiratory burst amplitude and burst duration were not affected by MS-222. The frequency of nonrespiratory neural activity did not significantly change with the addition of MS-222 below 1,000 micro M. These data indicate that MS-222 has a significant, direct effect on respiratory motor output from the central nervous system, producing both excitation and inhibition of fictive breathing. The results are consistent with other studies demonstrating that low concentrations of anesthetics generally cause excitation followed by depression at higher concentrations. Although the mechanisms underlying the excitatory effects of MS-222 in this study are unclear, they may include increased excitatory neurotransmission and/or disinhibition of inputs to the respiratory central pattern generator.
This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K(+)](o), changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem-spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K(+)](o) ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (f(gill)) and lung burst frequency (f(lung)) were significantly dependent upon [K(+)](o) (r(2) > 0.75; p < 0.001) from 1 to 10 mM K(+), and there was a strong correlation between f(gill) and f(lung) (r(2) = 0.65; p < 0.001). When [K(+)](o) was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (f(buccal)), was significantly dependent on [K(+)](o) (r(2) = 0.47; p < 0.001), but [K(+)](o) had no effect on f(lung) (p > 0.2), and there was no significant correlation between f(buccal) and f(lung). These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.