We have identified nine genes, the expression of which are regulated by the CreBC two-component system: the first members of the cre regulon. They are divided into eight transcriptional units, each having a promoter-proximal TTCACnnnnnnTTCAC "cre-tag" motif. The cre regulon genes are: the ackA/pta operon, the products of which collectively catalyze the conversion of acetyl-CoA into acetate and ATP; talA, which encodes an enzyme involved in the mobilization of glyceraldehyde-3-phosphate into the pentose phosphate pathway; radC, which encodes a RecG-like DNA recombination/ repair function; malE, which is the first gene in the malEFG maltose transporter operon; trgB, which encodes an ADP-ribose pyrophosphorylase; and three other genes, creD, yidS and yieI, the products of which have not been assigned a function. Expression of each of these cre regulon genes is induced via CreBC during growth in minimal media, with the exception of malE, which is more tightly repressed. The diverse functions encoded by the cre regulon suggest that CreBC is a global regulator that sits right at the heart of metabolic control in Escherichia coli.
Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity.
Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.