HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Photocatalytic paints based on titanium dioxide (TiO) nanoparticles represent a promising treatment technology for cleaning the air at our dwellings. A few studies have shown that instead of elimination of harmful indoor air pollutants the production of carbonyl compounds occurs from the photocatalytic paints. Herein, we report unexpectedly high concentrations of volatile organic compounds (VOCs) released upon irradiation of photocatalytic paints which are meant to clean the air at our dwellings. The concentrations of the VOCs were measured continuously and online by PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) connected to a well-established flow tube photoreactor. The PTR-ToF-MS analysis revealed the presence of 52 ions in the mass range between 20 and 490 amu, among which 43 have been identified. In particular very high emission rates were estimated of two relevant indoor air pollutants, formaldehyde and acetaldehyde as 355 μg h and 257 μg h for 1 m, respectively. We suggest a detailed reaction mechanism responsible for the production of these harmful indoor air pollutants (formaldehyde and acetaldehyde, among the others). The hydroxyl radicals (OH) formed upon activation of TiO, react with the organic constituent (butyl acrylate and vinyl acetate) of the paint binder lead to generation of an important number of organic compounds. We demonstrate that the TiO quantity and the organic content of the binder is of paramount importance with respect to the formation of VOCs, which should be considered for future optimization of this air remediation technology based on TiO nanoparticles.
Abstract. Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAPToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/ m > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.