The gut microbiome is shaped by diet and influences host metabolism, but these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of >1,100 gut microbiomes from individuals with detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements. We found strong associations between microbes and specific nutrients, foods, food groups, and general dietary indices, driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were reproducible across cohorts, and blood markers of cardiovascular disease and impaired glucose tolerance were more strongly associated with microbiome structure. While some microbes such as Prevotella copri and Blastocystis spp., were indicators of reduced postprandial glucose metabolism, several species were more directly predictive for postprandial triglycerides and C-peptide. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favourable cardiometabolic and postprandial markers, indicating our large-scale resource can potentially stratify the gut microbiome into generalizable health levels among individuals without clinically manifest disease. Fig. 1: The PREDICT 1 study associates gut microbiome structure with habitual diet and blood cardiometabolic markers. (A)The PREDICT 1 study assessed the gut microbiome of 1,098 volunteers from the UK and US via metagenomic sequencing of stool samples. Phenotypic data obtained through in-person assessment, blood/biospecimen collection, and the return of validated study questionnaires queried a range of relevant host/environmental factors including (1) personal characteristics, such as age, BMI, and estimated visceral fat; (2) habitual dietary intake using semi-quantitative food frequency questionnaires (FFQs);(3) fasting; and (4) postprandial cardiometabolic blood and inflammatory markers, total lipid and lipoprotein concentrations, lipoprotein particle sizes, apolipoproteins, derived metabolic risk scores, glycaemic-mediated metabolites, and metabolites related to fatty acid metabolism. (B) Overall microbiome alpha diversity, estimated as the total number of confidently identified microbial species in a given sample (richness), was correlated with HDL-D (positive) and estimated hepatic steatosis (negative). Up to ten strongest absolute Spearman correlations are reported for each category with q<0.05. Top species based on Shannon diversity are reported in Supplementary Fig. 1A and all correlations are in Supplementary Table 1. Microbial diversity and composition are linked with diet and fasting and postprandial biomarkersWe first leveraged a unique subpopulation of our study comprised of 480 twins to disentangle the confounding effects of shared genetics from other factors on microbiome composition. Our data confirmed that host genetics influences microbiome composition only to a small extent 18 , as intra-twin pair microbiome ...
SummaryBackgroundAccurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, the concentrations of which can be affected by food intake. We hypothesised that metabolic profiles of urine samples developed under controlled feeding conditions reflect dietary intake and can be used to model and classify dietary patterns of free-living populations.MethodsIn this randomised, controlled, crossover trial, we recruited healthy volunteers (aged 21–65 years, BMI 20–35 kg/m2) from a database of a clinical research unit in the UK. We developed four dietary interventions with a stepwise variance in concordance with the WHO healthy eating guidelines that aim to prevent non-communicable diseases (increase fruits, vegetables, whole grains, and dietary fibre; decrease fats, sugars, and salt). Participants attended four inpatient stays (72 h each, separated by at least 5 days), during which they were given one dietary intervention. The order of diets was randomly assigned across study visits. Randomisation was done by an independent investigator, with the use of opaque, sealed, sequentially numbered envelopes that each contained one of the four dietary interventions in a random order. Participants and investigators were not masked from the dietary intervention, but investigators analysing the data were masked from the randomisation order. During each inpatient period, urine was collected daily over three timed periods: morning (0900–1300 h), afternoon (1300–1800 h), and evening and overnight (1800–0900 h); 24 h urine samples were obtained by pooling these samples. Urine samples were assessed by proton nuclear magnetic resonance (1H-NMR) spectroscopy, and diet-discriminatory metabolites were identified. We developed urinary metabolite models for each diet and identified the associated metabolic profiles, and then validated the models using data and samples from the INTERMAP UK cohort (n=225) and a healthy-eating Danish cohort (n=66). This study is registered with ISRCTN, number ISRCTN43087333.FindingsBetween Aug 13, 2013, and May 18, 2014, we contacted 300 people with a letter of invitation. 78 responded, of whom 26 were eligible and invited to attend a health screening. Of 20 eligible participants who were randomised, 19 completed all four 72 h study stays between Oct 2, 2013, and July 29, 2014, and consumed all the food provided. Analysis of 1H-NMR spectroscopy data indicated that urinary metabolic profiles of the four diets were distinct. Significant stepwise differences in metabolite concentrations were seen between diets with the lowest and highest metabolic risks. Application of the derived metabolite models to the validation datasets confirmed the association between urinary metabolic and dietary profiles in the INTERMAP UK cohort (p<0·0001) and the Danish cohort (p<0·0001).InterpretationUrinary metabolite models developed in a highly controlled environment can classify groups of free-livin...
ObjectivePoor metabolic health and unhealthy lifestyle factors have been associated with risk and severity of COVID-19, but data for diet are lacking. We aimed to investigate the association of diet quality with risk and severity of COVID-19 and its interaction with socioeconomic deprivation.DesignWe used data from 592 571 participants of the smartphone-based COVID-19 Symptom Study. Diet information was collected for the prepandemic period using a short food frequency questionnaire, and diet quality was assessed using a healthful Plant-Based Diet Score, which emphasises healthy plant foods such as fruits or vegetables. Multivariable Cox models were fitted to calculate HRs and 95% CIs for COVID-19 risk and severity defined using a validated symptom-based algorithm or hospitalisation with oxygen support, respectively.ResultsOver 3 886 274 person-months of follow-up, 31 815 COVID-19 cases were documented. Compared with individuals in the lowest quartile of the diet score, high diet quality was associated with lower risk of COVID-19 (HR 0.91; 95% CI 0.88 to 0.94) and severe COVID-19 (HR 0.59; 95% CI 0.47 to 0.74). The joint association of low diet quality and increased deprivation on COVID-19 risk was higher than the sum of the risk associated with each factor alone (Pinteraction=0.005). The corresponding absolute excess rate per 10 000 person/months for lowest vs highest quartile of diet score was 22.5 (95% CI 18.8 to 26.3) among persons living in areas with low deprivation and 40.8 (95% CI 31.7 to 49.8) among persons living in areas with high deprivation.ConclusionsA diet characterised by healthy plant-based foods was associated with lower risk and severity of COVID-19. This association may be particularly evident among individuals living in areas with higher socioeconomic deprivation.
Background and aimsGut transit time is a key modulator of host–microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the ‘blue dye’ method as an inexpensive and scalable technique to measure transit time.MethodsWe assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study.ResultsWe found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency.ConclusionsGut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.
ObjectivesDietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection.DesignApp-based community survey.Setting445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373).Main exposureSelf-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020.Main outcome measuresSARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020.ResultsIn 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts.ConclusionIn women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.