Objective Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media.Methods We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words’ semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique.Results ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance.Conclusion It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets.
Objective Automatic monitoring of Adverse Drug Reactions (ADRs), defined as adverse patient outcomes caused by medications, is a challenging research problem that is currently receiving significant attention from the medical informatics community. In recent years, user-posted data on social media, primarily due to its sheer volume, has become a useful resource for ADR monitoring. Research using social media data has progressed using various data sources and techniques, making it difficult to compare distinct systems and their performances. In this paper, we perform a methodical review to characterize the different approaches to ADR detection/extraction from social media, and their applicability to pharmacovigilance. In addition, we present a potential systematic pathway to ADR monitoring from social media. Methods We identified studies, describing approaches for ADR detection from social media from the Medline, Embase, Scopus and Web of Science databases, and the Google Scholar search engine. Studies that met our inclusion criteria were those that attempted to utilize ADR information posted by users on any publicly available social media platform. We categorized the studies into various dimensions such as primary ADR detection approach, size of data, source(s), availability, evaluation criteria, and so on. Results Twenty-two studies met our inclusion criteria, with fifteen (68.2%) published within the last two years. The survey revealed a clear trend towards the usage of annotated data with eleven of the fifteen (73.3%) studies published in the last two years relying on expert annotations. However, publicly available annotated data is still scarce, and we found only six (27.3%) studies that made the annotations used publicly available, making system performance comparisons difficult. In terms of algorithms, supervised classification techniques to detect posts containing ADR mentions, and lexicon-based approaches for extraction of ADR mentions from texts have been the most popular. Conclusion Our review suggests that interest in the utilization of the vast amounts of available social media data for ADR monitoring is increasing with time. In terms of sources, both health-related and general social media data have been used for ADR detection— while health-related sources tend to contain higher proportions of relevant data, the volume of data from general social media websites is significantly higher. There is still very limited publicly available annotated data available, and, as indicated by the promising results obtained by recent supervised learning approaches, there is a strong need to make such data available to the research community.
IntroductionPrescription medication overdose is the fastest growing drug-related problem in the USA. The growing nature of this problem necessitates the implementation of improved monitoring strategies for investigating the prevalence and patterns of abuse of specific medications.ObjectivesOur primary aims were to assess the possibility of utilizing social media as a resource for automatic monitoring of prescription medication abuse and to devise an automatic classification technique that can identify potentially abuse-indicating user posts.MethodsWe collected Twitter user posts (tweets) associated with three commonly abused medications (Adderall®, oxycodone, and quetiapine). We manually annotated 6400 tweets mentioning these three medications and a control medication (metformin) that is not the subject of abuse due to its mechanism of action. We performed quantitative and qualitative analyses of the annotated data to determine whether posts on Twitter contain signals of prescription medication abuse. Finally, we designed an automatic supervised classification technique to distinguish posts containing signals of medication abuse from those that do not and assessed the utility of Twitter in investigating patterns of abuse over time.ResultsOur analyses show that clear signals of medication abuse can be drawn from Twitter posts and the percentage of tweets containing abuse signals are significantly higher for the three case medications (Adderall®: 23 %, quetiapine: 5.0 %, oxycodone: 12 %) than the proportion for the control medication (metformin: 0.3 %). Our automatic classification approach achieves 82 % accuracy overall (medication abuse class recall: 0.51, precision: 0.41, F measure: 0.46). To illustrate the utility of automatic classification, we show how the classification data can be used to analyze abuse patterns over time.ConclusionOur study indicates that social media can be a crucial resource for obtaining abuse-related information for medications, and that automatic approaches involving supervised classification and natural language processing hold promises for essential future monitoring and intervention tasks.
This study illustrated the potential a new nursing shift pattern involving 12-hour shifts has for patient care, as well as for staff job satisfaction and efficient management of the ward. Twelve-hour shifts are infamous in nursing and many studies cite exhausted and dissatisfied staff as a reason for the negative press (Fitzpatrick et al 1999, Todd et al 1993). In particular, Todd et al (1989) claimed that the quality of patient care was negatively affected on wards that used a 12-hour shift pattern. The study reported here challenges Todd et al's work (1989, 1993) by demonstrating the benefits a change in shift pattern to 12-hour shifts can have for patients and staff in a ward environment.
We developed an electronic records methodology to programmatically estimate the date of first appearance of coccidioidomycosis symptoms in patients. We compared the diagnostic delay with overall healthcare utilization charges. Many patients (46%) had delays in diagnosis of >1 month. Billed healthcare charges before diagnosis increased with length of delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.