Many DNAzymes have been isolated from synthetic DNA pools to cleave natural RNA (D-RNA) substrates and some have been utilized for the design of aptazyme biosensors for bioanalytical applications. Even though these biosensors perform well in simple sample matrices, they do not function effectively in complex biological samples due to ubiquitous RNases that can efficiently cleave D-RNA substrates. To overcome this issue, we set out to develop DNAzymes that cleave L-RNA, the enantiomer of D-RNA, which is known to be completely resistant to RNases. Through in vitro selection we isolated three L-RNA-cleaving DNAzymes from a random-sequence DNA pool. The most active DNAzyme exhibits a catalytic rate constant ~3 min-1 and has a structure that contains a kissing loop, a structural motif that has never been observed with D-RNA-cleaving DNAzymes. Furthermore we have used this DNAzyme and a well-known ATP-binding DNA aptamer to construct an aptazyme sensor and demonstrated that this biosensor can achieve ATP detection in biological samples that contain RNases. The current work lays the foundation for exploring RNA-cleaving DNAzymes for engineering biosensors that are compatible with complex biological samples.
The mechanism by which enzymes arose from both abiotic and biological worlds remains an unsolved natural mystery. We postulate that an enzyme can emerge from any sequence of any functional polymer under permissive evolutionary conditions. To support this premise, we have arbitrarily chosen a 50-nucleotide DNA fragment encoding for the Bos taurus (cattle) albumin mRNA and subjected it to test-tube evolution to derive a catalytic DNA (DNAzyme) with RNA-cleavage activity. After only a few weeks, a DNAzyme with significant catalytic activity has surfaced. Sequence comparison reveals that seven nucleotides are responsible for the conversion of the noncatalytic sequence into the enzyme. Deep sequencing analysis of DNA pools along the evolution trajectory has identified individual mutations as the progressive drivers of the molecular evolution. Our findings demonstrate that an enzyme can indeed arise from a sequence of a functional polymer via permissive molecular evolution, a mechanism that may have been exploited by nature for the creation of the enormous repertoire of enzymes in the biological world today.
We have previously shown that through test-tube molecular evolution, an arbitrarily chosen noncatalytic DNA sequence can be evolved into a catalytic DNA (DNAzyme) with significant RNA-cleaving activity. In this study, we aim to address the question of whether the catalytic activity of such a DNAzyme can be further optimized using in vitro selection. Several cycles of selective enrichment starting with a partially randomized DNA library have resulted in the isolation of many sequence variations that show notably improved catalytic activity. Bioinformatic analysis and activity examination of several DNAzyme-substrate constructs have led to two interesting findings about sequence mutations and the secondary structure of this DNAzyme: (1) three crucial mutations have transformed the DNAzyme into 8-17, a DNAzyme that has been discovered in multiple previous in vitro selection experiments, and (2) other mutations have allowed this special 8-17 variant to make structural fine-tuning in order to cleave an arbitrarily chosen RNA-containing substrate with a defined sequence. Our study not only showcases the combined power of directed molecular evolution and in vitro selection techniques in turning a noncatalytic nucleic acid sequence into an efficient enzyme, but it also raises the question of whether mother nature has used a similar approach to evolve natural enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.