Oxidative stress and oxidized dopamine contribute to the degeneration of the nigrostriatal pathway in Parkinson’s disease (PD). Selenoproteins are a family of proteins containing the element selenium in the form of the amino acid selenocysteine, and many of these proteins have antioxidant functions. We recently reported changes in expression of the selenoprotein, phospholipid hydroperoxide glutathione peroxidase GPX4 and its co-localization with neuromelanin in PD brain. To further understand the changes in GPX4 in PD, we examine here the expression of the selenium transport protein selenoprotein P (Sepp1) in postmortem Parkinson’s brain tissue. Sepp1 in midbrain was expressed in neurons of the substantia nigra (SN), and expression was concentrated within the centers of Lewy bodies, the pathological hallmark of PD. As with GPX4, Sepp1 expression was significantly reduced in SN from PD subjects compared with controls, but increased relative to cell density. In putamen, Sepp1 was found in cell bodies and in dopaminergic axons and terminals, although levels of Sepp1 were not altered in PD subjects compared to controls. Expression levels of Sepp1 and GPX4 correlated strongly in the putamen of control subjects but not in the putamen of PD subjects. These findings indicate a role for Sepp1 in the nigrostriatal pathway, and suggest that local release of Sepp1 in striatum may be important for signaling and/or synthesis of other selenoproteins such as GPX4.
Subjects with Alzheimer’s disease (AD) have elevated brain levels of the selenium transporter selenoprotein P (Sepp1). We investigated if this elevation results from increased release of Sepp1 from the choroid plexus (CP). Sepp1 is significantly increased in CP from AD brains in comparison to non-AD brains. Sepp1 localizes to the trans-Golgi network within CP epithelia, where it is processed for secretion. The cerebrospinal fluid from AD subjects also contains increased levels Sepp1 in comparison to non-AD subjects. These findings suggest that AD pathology induces increased levels of Sepp1 within CP epithelia for release into the cerebrospinal fluid to ultimately increase brain selenium.
Selenoprotein P (Sepp1), a glycoprotein rich in selenium, is thought to function in selenium transport throughout the body. The sepp1 gene locus potentially produces three alternative transcripts that differ only in their 5' untranslated regions (5'UTRs) and not in their protein coding regions, as indicated by transcript information in genomic databases. Here we investigated the distribution, relative expression, and biological significance of these transcript variants. We confirmed the expression of Sepp1 transcript variants using PCR and sequencing. Using 5'-RACE, we identified multiple 5'-termini upstream from three different splice donor sites, and a single splice acceptor site for exon 2. We found regional and temporal changes in variant expression in select adult and neonate murine tissue and brain regions. Distribution of variants in heart and kidney varied with stage of development. Notably, the Sepp1b variant was localized specifically to the hippocampus in brain. Targeted silencing of individual variants using RNAi demonstrated the biological importance for all transcript variants in cell viability. Additionally, we determined that the Sepp1b variant is a specific target for the miR-7 microRNA by means of its unique 5'UTR structure. Our results emphasize the importance of non-coding transcript variations as a regulatory means for Sepp1 expression in different tissues and stages of development. The presence of a variant localized in the hippocampus and regulated by a microRNA may have implications for the known deficits in synaptic function caused by genetic deletion of Sepp1.
Previous studies demonstrated that selenium in the form of sodium selenate reduces neurofibrillary tangle formation in Alzheimer’s disease models. Hyperphosphorylation of tau, which leads to formation of neurofibrillary tangles in Alzheimer’s disease, is increased by endoplasmic reticulum (ER) stress. Selenoprotein S (SelS) is part of an ER membrane complex that removes misfolded proteins from the ER as a means to reduce ER stress. Selenate, as with other forms of selenium, will increase selenoprotein expression. We therefore proposed that increased SelS expression by selenate would contribute to the beneficial actions of selenate in Alzheimer’s disease. SelS expression increased with ER stress and decreased under conditions of elevated glucose concentrations in the SH-SY5Y neuronal cell line. Reducing expression of SelS with siRNA promoted cell death in response to ER stress. Selenate increased SelS expression, which significantly correlated with decreased tau phosphorylation. Restricting SelS expression during ER stress conditions increased tau phosphorylation, and also promoted aggregation of phosphorylated tau in neurites and soma. In human postmortem brain, SelS expression coincided with neurofibrillary tangles, but not with amyloid-β plaques. These results indicate that selenate can alter phosphorylation of tau by increasing expression of SelS in Alzheimer’s disease and potentially other neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.