SummaryCarotenoids and flavonoids including anthocyanins are the predominant pigments in flowering plants, where they play important roles in pollination, seed dispersal, protection against stress and signalling. In certain families within the Pentapetalae order Caryophyllales, an unusual class of pigments, known as betalains, replaces the more common anthocyanins. This isolated occurrence of betalains in the Caryophyllales has stimulated over half a century of debate and experimentation. Numerous hypotheses have been suggested to explain the phylogenetically restricted occurrence of betalains and their apparent mutual exclusion with anthocyanins. In this review, we evaluate these hypotheses in the face of a changing interpretation of Caryophyllales phylogeny and new comparative genetic data. Phylogenetic analyses expose substantial gaps in our knowledge of the early evolution of pigments in the Caryophyllales and suggest pigmentation to be much more labile than previously recognized. Reconstructions of character evolution imply multiple switches from betalain to anthocyanin pigmentation, but also allow for possible multiple origins of betalains. Comparative genetic studies propose possible mechanisms underlying switches between pigment types and suggest that transcriptional down-regulation of late-acting enzymes is responsible for a loss of anthocyanins. Given these insights from molecular phylogenetics and comparative genetics, we discuss outstanding questions and define key goals for future research.
Differentiated epidermal cells such as trichomes and conical cells perform numerous essential functions in plant biology and are important for our understanding of developmental patterning and cell shape regulation. Many are also commercially significant, such as cotton fibers and trichomes that secrete pharmaceutically useful or herbivore-deterring compounds. Here, we focus on the phylogeny and evolution of the subgroup 9 R2R3 MYB gene transcription factors, which include the MIXTA gene, and that are important for the specification and regulation of plant cellular differentiation. We have sequenced 49 subgroup 9 R2R3 MYB genes from key experimental taxa and combined these sequences with those identified by an exhaustive bioinformatic search, to compile a data set of 223 subgroup 9 R2R3 MYB genes. Our phylogenetic analyses demonstrate, for the first time, the complex evolutionary history of the subgroup 9 R2R3 MYB genes. A duplication event is inferred before the origin of seed plants giving rise to two major gene lineages, here termed SBG9-A and SBG9-B. The evolutionary conservation of the SBG9-B gene lineage has not been previously recognized and its role in cellular differentiation is unknown, thus an entire clade of potential candidate genes for epidermal cell regulation remains to be explored. Using a heterologous transformation bioassay, we provide functional data that implicate members of the SBG9-B lineage in the specification of epidermal projections. Furthermore, we reveal numerous putative duplication events in both SBG9-A and SBG9-B lineages, resolving uncertainty about orthology and paralogy among the subgroup 9 R2R3 MYB genes. Finally, we provide a robust framework over which to interpret existing functional data and to direct ongoing comparative genetic research into the evolution of plant cellular diversity.
The Corallinoideae (Corallinaceae) is represented in the northeastern Atlantic by Corallina officinalis L.; Corallina elongata J. Ellis et Sol.; Haliptilon squamatum (L.) H. W. Johans., L. M. Irvine et A. M. Webster; and Jania rubens (L.) J. V. Lamour. The delimitation of these geniculate coralline red algae is based primarily on morphological characters. Molecular analysis based on cox1 and 18S rRNA gene phylogenies supported the division of the Corallinoideae into the tribes Janieae and Corallineae. Within the Janieae, a sequence difference of 46-48 bp (8.6%-8.9%) between specimens of H. squamatum and J. rubens in the cox1 phylogeny leads us to conclude that they are congeneric. J. rubens var. rubens and J. rubens var. corniculata (L.) Yendo clustered together in both phylogenies, suggesting that for those genes, there was no genetic basis for the morphological variation. Within the Corallineae, it appears that in some regions, the name C. elongata has been misapplied. C. officinalis samples formed two clusters that differed by 45-54 bp (8.4%-10.0%), indicating species-level divergence, and morphological differences were sufficient to define two species. One of these clusters was consistent with the morphology of the type specimen of C. officinalis (LINN 1293.9). The other species cluster is therefore described here as Corallina caespitosa sp. nov. This study has demonstrated that there is a clear need for a revision of the genus Corallina to determine the extent of ''pseudocryptic'' diversity in this group of red algae.
The living prokaryotic microbiome of the calcified geniculate (articulated) red alga, Corallina officinalis from the intertidal seashore is characterised for the first time based on the V6 hypervariable region of 16S rRNA. Results revealed an extraordinary diversity of bacteria associated with the microbiome. Thirty-five prokaryotic phyla were recovered, of which Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Verrucomicrobia, Firmicutes and Chloroflexi made up the core microbiome. Unclassified sequences made up 25% of sequences, suggesting insufficient sampling of the world's oceans/macroalgae. The greatest diversity in the microbiome was on the upper shore, followed by the lower shore then the middle shore, although the microbiome community composition did not vary between shore levels. The C. officinalis core microbiome was broadly similar in composition to those reported in the literature for crustose coralline algae (CCAs) and free-living rhodoliths. Differences in relative abundance of the phyla between the different types of calcified macroalgal species may relate to the intertidal versus subtidal habit of the taxa and functionality of the microbiome components. The results indicate that much work is needed to identify prokaryotic taxa, and to determine the nature of the relationship of the bacteria with the calcified host spatially, temporally and functionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.