Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1’s potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.
1. Background: The salvage pathway enzyme thymidine kinase 1 (TK1) is elevated in the serum of several different cancer types and higher expression is associated with more aggressive tumor grade. As a result, it has potential as a biomarker for diagnosis and prognosis. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement has not been identified. We propose to evaluate the effects of TK1 on cancer progression in vitro through measuring cellular invasion and survival of breast cancer cells.2.Methods: Breast cancer cells MDA-MB-231, HCC 1806, and MCF7 were cultured according to standard techniques. We employed the use of TK1 target siRNA and a CRISPR-Cas9 TK1 knockout plasmid to compare transfected cell lines to wild type cell lines. Protein factors in survival and invasive pathways were also tested for correlations to TK1 in BRCA RNA-seq patient data (n=1095) using the TIMER program. Cellular invasion was quantified in cell index (factor of impedance) over a 24-hour period. Cell survival was measured by apoptosis under metabolic and DNA stress using flow cytometry. All results were statistically assessed using an ANOVA or t-test in GraphPad PRISM®.3.Results: Cellular invasion assays assessing wild type and TK1 knockdown/knockout (TK1-/-) cell types showed TK1-/- cell lines had increased invasion potential (p= 0.0001). Bioinformatically, we saw a strong overall negative correlation between apoptotic factors and TK1 (p ≤ 0.05). When testing TK1 effects on cell survival we saw a protective affect under DNA stress (p ≤ 0.05), but not under metabolic stress (p= 0.0001).4.Conclusion From cell cycle analysis, we observed a shift towards S phase in TK1-/- cells. This shift to S phase would promote growth and account for the increased cellular invasion and decrease in metabolic induced stress in TK1-/- cells. We propose that cancer cells still may elicit a cancer progressive phenotype based on effects of TK1, but that a system which isolates TK1 is not effective to understand the effects. Instead, identifying protein networks inclusive of TK1 will help to elucidate its effects on cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.