Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Dental caries and periodontal disease are very common chronic diseases closely linked to inadequate removal of dental plaque. Powered toothbrushes are viewed as more effective at removing plaque; however, the conflicting evidence and considerable unexplained heterogeneity in their clinical outcomes does not corroborate the relative merits of powered tooth brushing. To explain the heterogeneity of brushing patterns with powered toothbrushes, we conducted a observational study of tooth brushing practices of 12 participants in their naturalistic setting. Integrated brush sensors and a digital data collection platform allowed unobtrusive and accurate capture of habitual brushing patterns. Annotated brushing data from 10 sessions per participant was chosen for scrutiny of brushing patterns. Analysis of brushing patterns from the total 120 sessions revealed substantial between- and within-participant variability in brushing patterns and efficiency. Most participants (91.67%) brushed for less than the generally prescribed two minutes; individual participants were also inconsistent in brushing duration across sessions. The time devoted to brushing different dental regions was also quite unequal. Participants generally brushed their buccal tooth surfaces more than twice as long as the occlusal (2.18 times longer (95% CI 1.42, 3.35; p < 0.001)) and lingual surfaces (2.22 times longer (95% CI 1.62, 3.10; p < 0.001); the lingual surfaces of the maxillary molars were often neglected (p < 0.001). Participants also varied in the epochs of excessive brushing pressure and the regions to which they were applied. In general, the occlusal surfaces were more likely to be brushed with excessive pressure (95% CI 0.10, 0.98; p = 0.015). Our study reveals that users of powered toothbrushes vary substantially in their use of the toothbrushes and diverge from recommended brushing practices. The inconsistent brushing patterns, between and within individuals, can affect effective plaque removal. Our findings underscore the limited uptake of generic oral self-care recommendations and emphasize the need for personalized brushing recommendations that derive from the objective sensor data provided by powered toothbrushes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.