Rapid population growth and coastal development are primary drivers of marine habitat degradation. Although shoreline hardening or armoring (the addition of concrete structures such as seawalls, jetties, and groins), a byproduct of development, can accelerate erosion and loss of beaches and tidal wetlands, it is a common practice globally. Here, we provide the first estimate of shoreline hardening along US Pacific, Atlantic, and Gulf of Mexico coasts and predict where future armoring may result in tidal wetland loss if coastal management practices remain unchanged. Our analysis indicates that 22 842 km of continental US shoreline -approximately 14% of the total US coastline -has been armored. We also consider how socioeconomic and physical factors relate to the pervasiveness of shoreline armoring and show that housing density, gross domestic product, storms, and wave height are positively correlated with hardening. Over 50% of South Atlantic and Gulf of Mexico coasts are fringed with tidal wetlands that could be threatened by future hardening, based on projected population growth, storm frequency, and an absence of coastal development restrictions.
In the high-salinity seaward portions of estuaries, oysters seek refuge from predation, competition and disease in intertidal areas 1,2 , but this sanctuary will be lost if vertical reef accretion cannot keep pace with sea-level rise (SLR). Oyster-reef abundance has already declined ∼85% globally over the past 100 years, mainly from over harvesting 3,4 , making any additional losses due to SLR cause for concern. Before any assessment of reef response to accelerated SLR can be made, direct measures of reef growth are necessary. Here, we present direct measurements of intertidal oyster-reef growth from cores and terrestrial lidar-derived digital elevation models. On the basis of our measurements collected within a mid-Atlantic estuary over a 15-year period, we developed a globally testable empirical model of intertidal oyster-reef accretion. We show that previous estimates of vertical reef growth, based on radiocarbon dates and bathymetric maps 5,6 , may be greater than one order of magnitude too slow. The intertidal reefs we studied should be able to keep up with any future accelerated rate of SLR (ref. 7) and may even benefit from the additional subaqueous space allowing extended vertical accretion.Oyster-reef communities (Crassostrea virginica) provide numerous ecosystem services, including production of oysters, water filtration 8,9 , provision of habitat for fishes and crustaceans 10 , shoreline stabilization 11,12 , and maintenance of estuarine-water alkalinity 13 . In the face of natural and anthropogenic stressors, such as harvesting, degrading water quality, increasing rates of SLR, warming, disease, ocean acidification, and parasitism, reef habitats and associated services are becoming unsustainable. Loss of these reefs in estuaries that otherwise lack alternative hard substrates is a global problem 4 . SLR, in particular, threatens oyster reefs in the high-salinity seaward portions of estuaries because there, oysters seek refuge from biofouling (space competition), predation and disease in intertidal areas 1,2 . The importance of the intertidal area to individual oyster growth in lower estuaries is apparent from experimental work that has shown intertidal oysters grow 34% faster and exhibit an order of magnitude less fouling (percentage cover) than subtidal oysters 14 . Constructed subtidal reefs in no-harvest sanctuaries (North Carolina, USA) were also found to have few, if any, live oysters (mean density of 0-92 live oysters m −2 ) after six years in euhaline waters, whereas intertidal reefs faired significantly better (200-225 live oysters m −2 ; ref. 15). Restoration is a common mitigation option for historic oyster-reef loss, but project success with accelerating SLR will depend on a reef 's ability to maintain an intertidal position. Model simulations presume that reef-accretion rates cannot exceed the rate of SLR, but parameterizations are not verified with direct measures of reef-scale growth 16,17 . Without direct measures of reef-scale growth, our ability to assess restoration and conservation ...
Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines. Shoreline hardening, a common coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls constructed of concrete, wood, vinyl, or steel), is resulting in a "coastal squeeze" on estuarine habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a combination of hard structures and plantings, can be deployed to restore or enhance multiple ecosystem services normally delivered by naturally vegetated shores. Although hundreds of living shoreline projects have been implemented in the United States alone, few studies have evaluated their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile breakwater), (2) natural salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded shores in providing habitat for fish and crustaceans (nekton). Sills supported higher abundances and species diversity of fishes than unvegetated habitat adjacent to bulkheads, and even control marshes. Sills also supported higher cover of filter-feeding bivalves (a food resource and refuge habitat for nekton) than bulkheads or control marshes. These ecosystem-service enhancements were detected on shores with sills three or more years after construction, but not before. Sills provide added structure and may provide better refuges from predation and greater opportunity to use available food resources for nekton than unvegetated bulkheaded shores or control marshes. Our study shows that unlike shoreline hardening, living shorelines can enhance some ecosystem services provided by marshes, such as provision of nursery habitat.
Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO While CO release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO (7.1 ± 1.2 MgC ha yr (µ ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha yr) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha yr) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha yr). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.