We present a new version of the Met Office Hadley Centre/Climatic Research Unit global surface temperature data set, HadCRUT5. HadCRUT5 presents monthly average near‐surface temperature anomalies, relative to the 1961–1990 period, on a regular 5° latitude by 5° longitude grid from 1850 to 2018. HadCRUT5 is a combination of sea‐surface temperature (SST) measurements over the ocean from ships and buoys and near‐surface air temperature measurements from weather stations over the land surface. These data have been sourced from updated compilations and the adjustments applied to mitigate the impact of changes in SST measurement methods have been revised. Two variants of HadCRUT5 have been produced for use in different applications. The first represents temperature anomaly data on a grid for locations where measurement data are available. The second, more spatially complete, variant uses a Gaussian process based statistical method to make better use of the available observations, extending temperature anomaly estimates into regions for which the underlying measurements are informative. Each is provided as a 200‐member ensemble accompanied by additional uncertainty information. The combination of revised input data sets and statistical analysis results in greater warming of the global average over the course of the whole record. In recent years, increased warming results from an improved representation of Arctic warming and a better understanding of evolving biases in SST measurements from ships. These updates result in greater consistency with other independent global surface temperature data sets, despite their different approaches to data set construction, and further increase confidence in our understanding of changes seen.
Abstract. Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m−2. Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m−2, bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOI https://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
One of the largest sources of uncertainty in estimates of global temperature change is that associated with the correction of systematic errors in sea surface temperature (SST) measurements. Despite recent work to quantify and reduce these errors throughout the historical record, differences between analyses remain larger than can be explained by the estimated uncertainties. We revisited the method used to estimate systematic errors and their uncertainties in version 3 of the Met Office Hadley Centre SST data set, HadSST. Using comparisons with oceanographic temperature profiles, we make estimates of biases associated with engine room measurements and insulated buckets and constrain the ranges of two of the more uncertain parameters in the bias estimation: the timing of the transition from uninsulated to insulated buckets in the middle twentieth century and the estimated fractions of different measurement methods used. Here, we present HadSST.4.0.0.0, based on release 3.0.0 and 3.0.1 of the International Comprehensive Ocean‐Atmosphere Data Set supplemented by drifting buoy measurements from the Copernicus Marine Environmental Monitoring Service. HadSST.4.0.0.0 comprises a 200‐member “ensemble” in which uncertain parameters in the SST bias scheme are varied to generate a range of adjustments. The evolution of global average SST in the new data set is similar to that in other SST data sets, and the difference between data sets is reduced during the middle twentieth century. However, the changes also highlight a discrepancy in the global‐average difference between adjusted SST and marine air temperature in the early 1990s and hence between HadSST.4.0.0.0 and, the National Oceanic and Atmospheric Administration SST data set, ERSSTv5.
Meyssignac et al. Measuring OHC to Estimate the EEI efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.