The tetraspanin CD53 has been implicated in B cell development and function. Tetraspanins are a family of transmembrane proteins important for organization of the plasma membrane and regulation of cellular migration, adhesion, and activation. CD53 has been shown to be a transcriptional target of EBF1, a critical transcription factor for early B cell development. Additional signaling for early B cell development occurs through the IL-7 receptor (IL-7R), where ligation promotes continued B cell differentiation and pro-survival/anti-apoptotic gene expression. Human deficiency of CD53 results in recurrent infections and reduced serum immunoglobulins. While prior studies have implicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. Herein, we show that CD53 expression rapidly increases throughout B cell development, beginning at the pre-pro-B cell stage. With a CRISPR-generated knockout mouse, we show that Cd53-/- mice have significantly reduced bone marrow (25% fewer, p<0.005), splenic (35% fewer, p<0.05), lymphatic (65% fewer, p<0.0001), and peripheral (30% fewer, p<0.005) B cells compared to wild-type (WT) littermate controls. Mirroring the human phenotype, Cd53-/- mice have significantly reduced serum IgG and IgM (40% reduced, p<0.01). In addition, hematopoietic stem cells isolated from Cd53-/- mice give rise to 30% fewer B cells compared to controls in vitro (p=0.005). Analysis of bone marrow B cell development demonstrates that this loss of B cells originates with early B cell progenitors, which express nearly 50% less IL-7Ra than WT and reduced IL-7 signaling. Using mass cytometry, we identified differential signaling pathways downstream of IL-7R in B cell progenitors. Specifically, we observe impaired PI3K and STAT5 activation in pre-pro- and pro-B cells in the absence of CD53, with a consequent increase in apoptosis in these populations (p<0.01). Decreased STAT5 phosphorylation was confirmed by western blot. Finally, co-immunoprecipitation studies demonstrate a physical interaction between CD53 and IL-7Ra, suggesting that these proteins associate at the cell surface. Together, these data suggest a novel role for CD53 during IL-7 signaling to promote early B cell development. Ongoing studies are focused on determining the CD53 residues required for interaction with IL-7R. Disclosures No relevant conflicts of interest to declare.
The tetraspanin CD53 has been implicated in B cell development and function. CD53 is a transcriptional target of EBF1, a critical transcription factor for early B cell development. Further, human deficiency of CD53 results in recurrent infections and reduced serum Igs. Although prior studies have indicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. In this study, we show that CD53 expression, which is minimal on hematopoietic stem and progenitor cells, increases throughout bone marrow B cell maturation, and mice lacking CD53 have significantly decreased bone marrow, splenic, lymphatic, and peripheral B cells. Mixed bone marrow chimeras show that CD53 functions cell autonomously to promote B lymphopoiesis. Cd53−/− mice have reduced surface expression of IL-7Rα and diminished phosphatidylinositol 3 kinase and JAK/STAT signaling in prepro- and pro-B cells. Signaling through these pathways via IL-7R is essential for early B cell survival and transition from the pro-B to pre-B cell developmental stage. Indeed, we find increased apoptosis in developing B cells and an associated reduction in pre-B and immature B cell populations in the absence of CD53. Coimmunoprecipitation and proximity ligation studies demonstrate physical interaction between CD53 and IL-7R. Together, these data, to our knowledge, suggest a novel role for CD53 during IL-7 signaling to promote early B cell differentiation.
Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy, most commonly originating from the transformation of progenitor cells of the B cell lineage (B cell precursor-ALL; BCP-ALL). Treatment of patients with high-risk or relapsed disease is difficult and prognosis remains poor in pediatric patients, with an even worse survival rate for adult BCP-ALL. Previous studies have shown an association of enhanced CD53 expression with many B cell malignancies, suggesting upregulation of CD53 may be implicated in carcinogenesis or maintenance of malignant cells. CD53 is a member of the tetraspanin family of transmembrane proteins, classically involved in cell adhesion, proliferation, and survival, and expressed exclusively on hematopoietic cells. While several studies have implicated a role for CD53 in regulating mature B cell proliferation, its role in early B cell development is not yet known. To elucidate the contribution of CD53 to normal and malignant B cell development, we have generated a CD53 knockout mouse. In our CD53-/- mouse, we observe no differences in total white blood cell counts, yet the fraction of peripheral blood B cells is significantly reduced by 31% compared to wild-type (WT) controls (28.3% vs. 19.5%; p<0.005). During homeostatic B lymphopoiesis, CD53 increases through development, beginning at the pre-pro-B cell stage and reaching highest expression on mature B cells. Further investigation into the loss of B cells revealed that immature pre-B cells in the bone marrow and mature B cells in the spleen and lymph nodes are significantly diminished upon loss of CD53, resulting from increased apoptosis in CD53-/- mice. B cell differentiation of CD53-/- hematopoietic stem cells (HSCs) in vitro corroborates the dependence on CD53 for normal differentiation, as CD53-/- cultures have 26% fewer B cells than controls (p=0.033). Investigation into the signaling differences between WT and CD53-/- B cell progenitors by mass cytometry (CyTOF) suggests that decreased PI3K/Akt and MAPK signaling could be driving this loss. With the observed loss of both B cell progenitors and mature B cells in CD53-deficient mice, CD53-/- mice were recently crossed to Eμ-Myc transgenic mice, a model of B-lineage leukemia/lymphoma, to generate WT, CD53-/-, Eμ-Myc+;CD53+/+, and Eμ-Myc+;CD53-/- groups to assess whether loss of CD53 alters the pathology or survival of these mice. As observed in human patients, moribund Eμ-Myc+ mice significantly upregulate CD53 on malignant cells, suggesting a potential role for CD53 during pathogenesis. Ongoing experiments are aimed at elucidating the mechanism by which CD53 promotes homeostatic B cell development and determining the potential of CD53 as a therapeutic target for B lineage malignancies. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.