Surface-active species are present in marine waters and can accumulate in the surface microlayer (SML). Surfactants are amphiphilic organic compounds that reduce surface tension at an interface. Current work is investigating the link between the molecular composition of surfactants in the SML and those in subsurface waters, as well as the differences in surfactant molecular composition across different water types. In this study, subsurface water and SML samples were collected on three sampling days at three sites in the Delaware Bay: the Mouth of the Bay, Mid-Bay, and the marsh-influenced Broadkill River. Organic matter was extracted from the SML and subsurface water using two solid-phase extractions (graphitized carbon and C18) and then analyzed using tensiometry and high-resolution mass spectrometry, in positive and negative ionization modes. Here, we show that molecules with high H/C are preferentially enriched in the SML compared to the subsurface waters. We demonstrate that the measured organic extracts contribute to lower surface tensions in the SML. A rainfall event led to increased terrestrial runoff and mixing that altered the composition of the organic molecules in the SML and subsurface waters of the Broadkill River site, and the composition of the extracted organic molecules varied across sampling days. These results imply that the surfactant compositions are not uniform across sampling regions or from the subsurface to the SML.
The cloud condensation nuclei activation of sea spray aerosol (SSA) is tightly linked to the hygroscopic properties of these particles and is defined by their physical and chemical properties. While hygroscopic sea salt in SSA strongly influences particle water uptake, the marine-derived components that make up the organic fraction of SSA constitute a complex mixture, and their effect on hygroscopic growth is unknown. To constrain the effect of organic compounds and specifically surface-active compounds that adsorb on particle interfaces, particle hygroscopic growth studies were performed on laboratory-generated model sea salt/sugar particles. For sea salt/glucose particles, ionic surfactants facilitated water uptake at low relative humidity (RH), increasing the particle growth factor (GF) by up to 7.61%, and caused a reduction in the deliquescence relative humidity (DRH), while nonionic surfactants had a minimal effect. Replacing glucose with polysaccharide laminarin in sea salt/sugar/surfactant particles caused a reduction in GF at low RHs and minimized the effect of ionic surfactants on the DRH. At RHs above the DRH, the addition of anionic or nonionic surfactants caused a decrease in GF for both sea salt/glucose and sea salt/laminarin particles. The addition of cationic surfactants, however, did not have a dampening effect on water uptake of sea salt/sugar particles and even showed a GF increase of up to 3.7% at 90% RH. An increase in the complexity of the sugar dampens the water uptake for particles containing nonionic surfactants but increases the water uptake for cationic surfactants. The cloud activation potential for 100 nm particles analyzed in this study is higher for ionic surfactants and decreases with an increase in surfactant molecular size when particle interfacial tension is considered. The surfactant effect on the hygroscopic growth and cloud activation potential of the particles containing sea salt/sugar is dependent on the surfactant ionicity and molecular size, the particle size and interfacial tension, and the interactions between inorganic salt and organic species under different RH conditions.
The physical and chemical properties of atmospheric aerosol particles depend on their sources and lifetime in the atmosphere. In coastal regions, sources may include influences from marine, continental, anthropogenic, and natural emissions. In this study, particles in ten diameter-size ranges were collected, and particle number size distributions were measured, at Skidaway Island, GA in May and June 2018. Based on air mass back trajectories and concentrations of major ions in the particles, the air mass source regions were identified as Marine Influenced, Mixed, and Continental Influenced. Organic molecules were extracted from the particles using solid-phase extraction and characterized using tensiometry and high-resolution mass spectrometry. The presence of surfactants was confirmed in the extracts through the observation of significant surface tension depressions. The organic formulas contained high hydrogen-to-carbon (H/C) and low oxygen-to-carbon (O/C) ratios, similar to surfactants and lipid-like molecules. In the Marine Influenced particles, the fraction of formulas identified as surfactant-like was negatively correlated with minimum surface tensions; as the surfactant fraction increased, the surface tension decreased. Analyses of fatty acid compounds demonstrated that organic compounds extracted from the Marine Influenced particles had the highest carbon numbers (18), compared to those of the Mixed (15) and Continental Influenced (9) particles. This suggests that the fatty acids in the Continental Influenced particles may have been more aged in the atmosphere and undergone fragmentation. This is one of the first studies to measure the chemical and physical properties of surfactants in size-resolved particles from different air mass source regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.