The basic helix-loop-helix transcription factors encoded by the E2A gene function at the apex of a transcriptional hierarchy involving E2A, early B cell factor (EBF), and Pax5, which is essential for B lymphopoiesis. In committed B lineage progenitors, E2A proteins have also been shown to regulate many lineage-associated genes. Herein, we demonstrate that the block in B lymphopoiesis imposed by the absence of E2A can be overcome by expression of EBF, but not Pax5, indicating that EBF is the essential target of E2A required for development of B lineage progenitors. Our data demonstrate that EBF, in synergy with low levels of alternative E2A-related proteins (E proteins), is sufficient to promote expression of most B lineage genes. Remarkably, however, we find that E2A proteins are required for interleukin 7–dependent proliferation due, in part, to a role for E2A in optimal expression of N-myc. Therefore, high levels of E protein activity are essential for the activation of EBF and N-myc, whereas lower levels of E protein activity, in synergy with other B lineage transcription factors, are sufficient for expression of most B lineage genes.
The E2A gene encodes two E protein/class I basic helix-loop-helix transcription factors, E12 and E47, that are essential for B lymphopoiesis. In addition to the DNA-binding and protein dimerization domain, the E proteins share two highly conserved transcription activation domains. In this study, we show that both activation domains are required for optimal E2A-dependent transcription. Surprisingly, however, neither activation domain is required for E2A to rescue B lymphopoiesis from E2A−/− hemopoietic progenitors, although the N terminus of E2A, which harbors some transcription capacity, is required. Therefore, the E protein activation domains function redundantly in promoting B cell development. In contrast, the N-terminal activation domain, AD1, is required for a newly described ability of E2A to suppress macrophage development in vitro. Our findings demonstrate distinct functionalities for the E protein activation domains in B lymphocytes and macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.