Repeated developmental exposure to the organophosphate insecticide chlorpyrifos (CPF) inhibits brain fatty acid hydrolase (FAAH) activity at low levels, whereas at higher levels, it inhibits brain monoacylglycerol lipase (MAGL) activity. FAAH and MAGL hydrolyze the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2AG), respectively. Peripherally, AEA and 2AG have physiological roles in the regulation of lipid metabolism and immune function and altering the normal levels of these lipid mediators can negatively affect these processes. Exposure to CPF alters brain endocannabinoid hydrolysis activity but it is unclear whether low level exposure alters this activity in peripheral tissues important in metabolic and immune function. Therefore, rat pups were exposed orally from day 10–16 to either: 0.5, 0.75, or 1.0 mg/kg CPF or 0.02 mg/kg PF-04457845 (a specific FAAH inhibitor). At 12 hrs post-exposure, FAAH, MAGL and cholinesterase (ChE) activities were determined. All treatments inhibited FAAH activity in brain, spleen, and liver. CPF inhibited ChE activity in spleen and liver (all dosages) and in brain (highest dosage only). CPF inhibited total 2AG hydrolysis and MAGL-specific activity in brain and spleen (high dosage only). In liver, total 2AG hydrolysis was inhibited by all treatments and could be attributed to inhibition of non-MAGL-mediated 2AG hydrolysis, indicating involvement of other enzymes. MAGL-specific activity in liver was inhibited only by the high CPF dosage, whereas PF-04457845 slightly increased this activity. Overall, exposure to low levels of CPF and to PF-04457845 can alter endocannabinoid metabolism in peripheral tissues, thus potentially affecting physiological processes.
Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.
is published in January (annual meeting abstracts), April, July, and October, by the Mississippi Academy of Sciences. Members of the Academy receive the journal as part of their regular (nonstudent) membership. Inquiries regarding subscriptions, availability of back issues, and address changes should be addressed to The Mississippi Academy of Sciences,
Objective: To determine if robotic ankle exoskeleton users decrease triceps surae muscle activity when using proportional myoelectric control, we studied healthy young participants walking with commercially available electromechanical ankle exoskeletons (Dephy Exoboot) with a novel controller. The vast majority of robotic lower limb exoskeletons do not have direct neural input from the user which makes adaptation of exoskeleton dynamics based on user intent difficult. Proportional myoelectric control has proven to allow considerable adaptation in muscle activation and gait kinematics in pneumatic, tethered ankle exoskeletons. In this study we quantified the changes in muscle activity and joint biomechanics of twelve participants walking for 30 minutes on a treadmill. Results: The exoskeletons provided 29% of the peak total ankle power and 18% of the peak total ankle moment by the end of the practice session. There was a decrease of 12% in soleus, 17% in lateral gastrocnemius and 5% in medial gastrocnemius electromyography (EMG) root mean square (root mean squared) after walking with the exoskeleton for 30 minutes compared to not wearing the exoskeleton, but this difference was not statistically significant. There were no differences in joint biomechanics of the ankle, hip, or knee between the end of training compared to walking without the exoskeletons. Conclusions: Contrary to expectations, triceps surae muscle activity showed only small non-significant decreases in 30 minutes of walking with portable, electromechanical ankle exoskeletons under proportional myoelectric control. The commercially available ankle exoskeletons were likely too weak to produce a statistically meaningful decline in triceps surae recruitment. Future research should include a wider variety of tasks, including measurements of metabolic energy expenditure, and provide a longer period of adaptation to evaluate the ankle exoskeletons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.