In response to hospital acquired infections stemming from biofilms and the impending antibiotic resistance crisis, the development of non-traditional, non-leachable antimicrobials have gained significant traction. Contact-active antimicrobial coatings physically attached to surfaces with cationic active sites, such as ammonium and phosphonium, are of particular interest in the prevention of pathogenic bacterial transfer. Previously reported antimicrobial coatings are found to be susceptible to abrasion, significantly limiting their potential applications. In this work, a range of robust, antimicrobial polymeric coatings synthesized by control radical polymerization are presented. Polymeric thin film coatings possessing cationic groups with n-alkyl substituents of n ≤ 4 demonstrated antimicrobial properties against gram-positive bacteria, while species containing bulkier substituents were biologically inactive, contradictory of previously reported monomeric coatings. Cationic polymeric brush coatings were found to have a higher antibacterial activity against the gram-positive model compared to its non-brush equivalent, but failed against the gram-negative model. These polymeric thin films demonstrate the complexity of antimicrobial coating designs and facilitates the investigation into the architecture of these coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.