The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution, or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment. ToC blurbIn this Review, Hatzenpichler et al. introduce next-generation physiology, which is a suite of new techniques that enable to investigate the phenotypes of individual cells in a non-destructive manner. Next-generation physiology complements genomics and culturing and provides new insights into microbiome function.
Metagenomic studies have revolutionized our understanding of the metabolic potential of uncultured microorganisms in various ecosystems. However, many of these genomic predictions have yet to be experimentally tested, and the functional expression of genomic potential often remains unaddressed. In order to obtain a more thorough understanding of cell physiology, novel techniques capable of testing microbial metabolism under close to in situ conditions must be developed. Here, we provide a benchmark study to demonstrate that bioorthogonal non-canonical amino acid tagging (BONCAT) in combination with fluorescence-activated cell sorting (FACS) and 16S rRNA gene sequencing can be used to identify anabolically active members of a microbial community incubated in the presence of various growth substrates or under changing physicochemical conditions. We applied this approach to a hot spring sediment microbiome from Yellowstone National Park (Wyoming, USA) and identified several microbes that changed their activity levels in response to substrate addition, including uncultured members of the phyla Thaumarchaeota, Acidobacteria, and Fervidibacteria. Because shifts in activity in response to substrate amendment or headspace changes are indicative of microbial preferences for particular growth conditions, results from this and future BONCAT-FACS studies could inform the development of cultivation media to specifically enrich uncultured microbes. Most importantly, BONCAT-FACS is capable of providing information on the physiology of uncultured organisms at as close to in situ conditions as experimentally possible.
The formation and fate of pyrite (FeS2) modulates global iron, sulfur, carbon, and oxygen biogeochemical cycles and has done so since early in Earth’s geological history. A longstanding paradigm is that FeS2 is stable at low temperature and is unavailable to microorganisms in the absence of oxygen and oxidative weathering. Here, we show that methanogens can catalyze the reductive dissolution of FeS2 at low temperature (≤38 °C) and utilize dissolution products to meet cellular iron and sulfur demands associated with the biosynthesis of simple and complex co-factors. Direct access to FeS2 is required to catalyze its reduction and/or to assimilate iron monosulfide that likely forms through coupled reductive dissolution and precipitation, consistent with close associations observed between cells and FeS2. These findings demonstrate that FeS2 is bioavailable to anaerobic methanogens and can be mobilized in low temperature anoxic environments. Given that methanogens evolved at least 3.46 Gya, these data indicate that the microbial contribution to the iron and sulfur cycles in ancient and contemporary anoxic environments may be more complex and robust than previously recognized, with impacts on the sources and sinks of iron and sulfur and other bio-essential and thiophilic elements such as nickel and cobalt.
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.
Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS 2 ) generating aqueous iron-sulfide (FeS (aq) ) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS 2 or ferrous iron (Fe(II)) and sulfide (HS - ). FeS 2 -grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS - -grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS 2 -grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS 2 -grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS 2 -grown cells. We interpret these data to indicate that, in FeS 2 -grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS (aq) ) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS 2 is the most abundant sulfide mineral in the Earth’s crust and is common in environments inhabited by methanogenic archaea. FeS 2 can be reduced by methanogens, yielding aqueous FeS (aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS 2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS 2 -grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS (aq) . These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.