Methods for the stabilization of well-defined helical peptide drugs and basic research tools have received considerable attention in the last decade. Here, we report the stable and functional display of an HIV gp41 C-peptide helix mimic on a GRAM-Like Ubiquitin-binding in EAP45 (GLUE) protein. C-peptide helix-grafted GLUE selectively binds the N-terminal helical region of gp41, a well-established HIV drug target, in a complex cellular environment. Additionally, the helix-grafted GLUE is folded in solution, stable in human serum, and soluble in aqueous solutions, and thus overcomes challenges faced by a multitude of peptide drugs, including those derived from HIV gp41 C-peptide.
Many therapeutically-relevant protein-protein interactions (PPIs) have been reported that feature a helix and helix-binding cleft at the interface. Given this, different approaches to disrupting such PPIs have been developed. While short peptides (<15 amino acids) typically do not fold into a stable helix, researchers have reported chemical approaches to constraining helix structure. However, these approaches rely on laborious, and often expensive, chemical synthesis and purification. Our premise is that protein-based solutions that stabilize a therapeutically-relevant helix offer a number of advantages. In contrast to chemically constrained helical peptides, or minimal/miniature proteins, which must be synthesized (at great expense and labor), a protein can be expressed in a cellular system (like all current protein therapeutics). If selected properly, the protein scaffold can stabilize the therapeutically-relevant helix. We recently reported a protein engineering strategy, which we call “helix-grafted display”, and applied it to the challenge of suppressing HIV entry. We have reported helix-grafted display proteins that inhibit formation of an intramolecular PPI involving HIV gp41 C-peptide helix, and HIV gp41 N-peptide trimer, which contain C-peptide helix-binding clefts. Here, we used yeast display to screen a library of grafted C-peptide helices for N-peptide trimer recognition. Using ‘hits’ from yeast display library screening, we evaluated the effect helix mutations have on structure, expression, stability, function (target recognition), and suppression of HIV entry.2009 Elsevier Ltd. All rights reserved.
We report fusion proteins designed to bind spatially distinct epitopes on the extracellular portion of HER2, a breast cancer biomarker and established therapeutic target, and recruit IgG (either anti‐His6 or serum IgG) to the cell surface. When the proteins were incubated with anti‐His6 antibody and various concentrations of a single HER2‐binding protein His6 fusion, we observed interference and a decrease in antibody recruitment at HER2‐binding protein concentrations exceeding ∼30 nM. In contrast, concomitant treatment with two or three distinct HER2‐binding protein His6 fusions, and anti‐His6, results in increased antibody recruitment, even at relatively high HER2‐binding protein concentration. In some instances, increased antibody recruitment leads to increased antibody‐dependent cellular cytotoxicity (ADCC) activity. While a fusion protein consisting of a HER2‐binding nanobody and Sac7d, a protein evolved to recognize the Fc domain of IgG, binds IgG from serum, antibody recruitment does not lead to ADCC activity. Rationales for these disparities are provided. Collectively, our findings have implications for the design of efficacious targeted immunotherapeutic biologics, and ensembles thereof.
Bispecific molecules are biologically significant, yet their complex structures pose important manufacturing and pharmacokinetic challenges. Nevertheless, owing to similarities with monoclonal antibodies (mAbs), IgG-like bispecifics conceptually align well with conventional expression and manufacturing platforms and often exhibit potentially favorable drug metabolism and pharmacokinetic (DMPK) properties. However, IgG-like bispecifics do not possess target bivalency and current designs often require tedious engineering and purification to ensure appropriate chain pairing. Here, we present a near-native IgG antibody format, the 2xVH, which can create bivalency for each target or epitope and requires no engineering for cognate chain pairing. In this modality, two different variable heavy (VH) domains with distinct binding specificities are grafted onto the first constant heavy (CH1) and constant light (CL) domains, conferring the molecule with dual specificity. To determine the versatility of this format, we characterized the expression, binding, and stability of several previously identified soluble human VH domains. By grafting these domains onto an IgG scaffold, we generated several prototype 2xVH IgG and Fab molecules that display similar properties to mAbs. These molecules avoided the post-expression purification necessary for engineered bispecifics while maintaining a capacity for simultaneous dual binding. Hence, the 2xVH format represents a bivalent, bispecific design that addresses limitations of manufacturing IgG-like bispecifics while promoting biologically-relevant dual target engagement.
The size, functional group diversity and three-dimensional structure of proteins often allow these biomolecules to bind disease-relevant structures that challenge or evade small-molecule discovery. Additionally, folded proteins are often much more stable in biologically relevant environments, compared to their peptide counterparts. We recently showed that helix-grafted-display—extensive resurfacing and elongation of an existing solvent exposed helix in a Pleckstrin Homology (PH) domain—leads to a new protein that binds a surrogate of HIV-1 gp41, a validated target for inhibition of HIV-1 entry. Expanding on this work, we prepared a number of human-derived helix-grafted-display PH domains with varied helix length, and measured properties relevant to therapeutic and basic research applications. In particular, we show that some of these new reagents express well as recombinant proteins in E. coli, are relativey stable in human serum, bind a mimic of pre-fusogenic HIV-1 gp41 in vitro and in complex biological environments, and significantly lower the incidence of HIV-1 infection of CD4-positive cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.