Controlling enzyme orientation and location on surfaces is a critical step for their successful deployment in diverse applications from biosensors to lab-on-a-chip devices. Functional activity of the enzymes on the surface will largely depend on the spatial arrangement and orientation. Solid binding peptides have been proven to offer versatility for immobilization of biomolecules on inorganic materials including metals, oxides, and minerals. Previously, we demonstrated the utility of a gold binding peptide genetically incorporated into the enzyme putrescine oxidase (PutOx−AuBP), enabling self-enzyme assembly on gold substrates. PutOx is an attractive biocatalyst among flavin oxidases, using molecular oxygen as an electron acceptor without requiring a dissociable coenzyme. Here, we explore the selective self-assembly of this enzyme on a range of surfaces using atomic force microscopy (AFM) along with the assessment of functional activity. This work probes the differences in surface coverage, distribution, size, shape, and activity of PutOx−AuBP in comparison to those of native putrescine oxidase (PutOx) on multiple surfaces to provide insight for material-selective enzymatic assembly. Surfaces investigated include metal (templated-stripped gold (TSG)), oxide (native SiO 2 on Si(111)), minerals (mica and graphite), and self-assembled monolayers (SAMs) with a range of hydrophobicity and charge. Supported by both the coverage and the dimensions of immobilized enzymes, our results indicate that of the surfaces investigated, material-selective binding takes place with orientation control only for PutOx−AuBP onto the TSG substrate. These differences are consistent with the measurements of surface-bound enzymatic activities. Substrate-dependent differences observed indicate significant variations in enzyme−surface interactions ranging from peptide-directed self-assembly to enzyme aggregation. The implications of this study provide insight for the fabrication of enzymatic patterns directed by self-assembling peptide tags onto localized surface regions. Enabling functional enzyme-based nanoscale materials offers a fascinating path for utilization of sustainable biocatalysts integrated into multiscale devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.