A wet-bulb temperature of 35°C has been theorized to be the limit to human adaptability to extreme heat, a growing concern in the face of continued and predicted accelerated climate change. While this theorized threshold is based in physiological principles it has not been tested using empirical data. This study examined the critical wet-bulb temperature (Twb, crit) at which heat stress becomes uncompensable in young, healthy adults performing tasks at modest metabolic rates mimicking basic activities of daily life. Across six experimentally determined environmental limits, no subject's Twb, crit reached the 35°C limit and all means were significantly lower than the theoretical 35°C threshold. Mean Twb, crit values were relatively constant across 36-40°C humid environments and averaged 30.55±0.98 °C but progressively decreased (higher deviation from 35°C) in hotter, dry ambient environments. Twb, crit was significantly associated with mean skin temperature (and a faster warming rate of the skin) due to larger increases in dry heat gain in the hot-dry environments. As sweat rates did not significantly differ among experimental environments, evaporative cooling was outpaced by dry heat gain in hot-dry conditions, causing larger deviations from the theoretical 35°C adaptability threshold. In summary, a wet-bulb temperature threshold cannot be applied to human adaptability across all climatic conditions and where appropriate (high humidity), that threshold is well below 35°C.
Critical environmental limits are those combinations of ambient temperature and humidity above which heat balance cannot be maintained for a given metabolic heat production, limiting exposure time and placing individuals at increased risk of heat-related illness. The aim of the present study was to establish those limits in young (18-34 yr) healthy adults during low-intensity activity approximating the metabolic demand of activities of daily living. Twenty-five (12 men/13 women) subjects were exposed to progressive heat stress in an environmental chamber at two rates of metabolic heat production chosen to represent minimal activity (MinAct) or light ambulation (LightAmb). Progressive heat stress was performed with either (1) constant dry-bulb temperature (Tdb) and increasing ambient water vapor pressure (Pa) (Pcrit trials; 36, 38, or 40 °C), or (2) constant Pa and increasing Tdb (Tcrit trials; 12, 16, or 20 mmHg). Each subject was tested during MinAct and LightAmb in 2-3 experimental conditions in random order, for a total of 4-6 trials per participant. Higher metabolic heat production (p < 0.001) during LightAmb compared to MinAct trials resulted in significantly lower critical environmental limits across all Pcrit and Tcrit conditions (all p < 0.001). These data, presented graphically herein on a psychrometric chart, are the first to define critical environmental limits for young adults during activity resembling those of light household tasks or other activities of daily living, and can be used to develop guidelines, policy decisions, and evidence-based alert communications to minimize the deleterious impacts of extreme heat events.
With global warming, much attention has been paid to the upper limits of human adaptability. However, the time to reach a generally-accepted core temperature criterion (40.2°C) associated with heat-related illness above (uncompensable heat stress) and just below (compensable heat stress) the upper limits for heat balance remains unclear. Forty-eight (22 men/26 women; 23±4 y) subjects were exposed to progressive heat stress in an environmental chamber during minimal activity (MinAct, 159±34W) and light ambulation (LightAmb, 260±55W) in warm-humid (WH; ~35°C, >60% RH) and hot-dry (HD; 43-48°C, <25% RH) environments until heat stress became uncompensable. For each condition, we compared heat storage (S) and the change in gastrointestinal temperature (∆Tgi) over time during compensable and uncompensable heat stress. Using the slopes of the Tgi response, we estimated the time to reach Tgi=40.2°C. Finally, we examined whether individual characteristics or seasonality were associated with the rate of increase in Tgi. During compensable heat stress, S was higher in HD than in WH environments (p<0.05) resulting in a greater but more variable ∆Tgi (p≥0.06) for both metabolic rates. There were no differences among conditions during uncompensable heat stress (all p>0.05). There was no influence of sex, aerobic fitness, or seasonality, but a larger body size was associated with a greater ∆Tgi during LightAmb in WH (p=0.003). Sustained light activity without intervention in uncompensable thermal environments may result in a Tc of 40.2°C (from a 37°C baseline) in 3-7 hours even in young adults vs. several days under compensable heat stress.
Extreme heat events and consequent detrimental heat-health outcomes have been increasing in recent decades and are expected to continue with future climate warming. While many indices have been created to quantify the combined atmospheric contributions to heat, few have been validated to determine how index-defined heat conditions impact human health. However, this subset of indices is likely not valid for all situations and populations nor easily understood and interpreted by health officials and the public. In this study, we compare the ability of thresholds determined from the National Weather Service’s (NWS) Heat Index (HI), the Wet Bulb Globe Temperature (WBGT), and the Universal Thermal Climate Index (UTCI) to predict the compensability of human heat stress (upper limits of heat balance) measured as part of the Pennsylvania State University’s Heat Environmental Age Thresholds (PSU HEAT) project. While the WBGT performed the best of the three indices for both minimal activities of daily living (MinAct; 83 W·m−2) and light ambulation (LightAmb; 133 W·m−2) in a cohort of young, healthy subjects, HI was likewise accurate in predicting heat stress compensability in MinAct conditions. HI was significantly correlated with subjects’ perception of temperature and humidity as well as their body core temperature, linking perception of the ambient environment with physiological responses in MinAct conditions. Given the familiarity the public has with HI, it may be better utilized in the expansion of safeguard policies and the issuance of heat warnings during extreme heat events, especially when access to engineered cooling strategies is unavailable.
The PSU HEAT protocol has been used to determine critical environmental limits, i.e., those combinations of ambient temperature and humidity above which heat stress becomes uncompensable and core temperature rises continuously. However, no studies have rigorously investigated the reliability and validity of this experimental protocol. Here, we assessed the (1) between-visit reliability and (2) validity of the paradigm. Twelve subjects (5M/7W; 25±4 yr) completed a progressive heat stress protocol during which they walked on a treadmill (2.2 mph, 3% gradient) in a controllable environmental chamber. After an equilibration period, either dry-bulb temperature (Tdb) was increased every 5 min while ambient water vapor pressure (Pa) was held constant (Tcrit experiments) or Pa was increased every 5 min while Tdb was held constant (Pcrit experiments) until an upward inflection in gastrointestinal temperature (Tgi) was observed. For reliability experiments, 11 subjects repeated the same protocol on a different day. For validity experiments, 10 subjects performed a Tcrit experiment at their previously determined Pcrit or vice versa. The between-visit reliability (intraclass correlation coefficient, ICC) for critical environmental limits was 0.98. Similarly, there was excellent agreement between original and validity trials for Tcrit (ICC = 0.95) and Pcrit (ICC = 0.96). Further, the wet-bulb temperature at the Tgi inflection point was not different during reliability (p = 0.78) or validity (p = 0.32) trials compared to original trials. These findings support the reliability and validity of this experimental paradigm for the determination of critical environmental limits for maintenance of human heat balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.