The results of a combined experimental and computational study of the uranium atom are presented with the aim of determining its electron affinity. Experimentally, the electron affinity of uranium was measured via negative ion photoelectron spectroscopy of the uranium atomic anion, U−. Computationally, the electron affinities of both thorium and uranium were calculated by conducting relativistic coupled-cluster and multi-reference configuration interaction calculations. The experimentally determined value of the electron affinity of the uranium atom was determined to be 0.309 ± 0.025 eV. The computationally predicted electron affinity of uranium based on composite coupled cluster calculations and full four-component spin–orbit coupling was found to be 0.232 eV. Predominately due to a better convergence of the coupled cluster sequence for Th and Th−, the final calculated electron affinity of Th, 0.565 eV, was in much better agreement with the accurate experimental value of 0.608 eV. In both cases, the ground state of the anion corresponds to electron attachment to the 6d orbital.
The results of calculations of the properties of the anion UN– including electron detachment are described, which further expand our knowledge of this diatomic molecule. High-level electronic structure calculations were conducted for the UN and UN– diatomic molecules and compared to photoelectron spectroscopy measurements. The low-lying Ω states were obtained using multireference CASPT2 including spin-orbit effects up to ∼20,000 cm–1. At the Feller–Peterson–Dixon (FPD) level, the adiabatic electron affinity (AEA) of UN is estimated to be 1.402 eV and the vertical detachment energy (VDE) is 1.423 eV. The assignment of the UN excited states shows good agreement with the experimental results with a VDE of 1.424 eV. An Ω = 4 ground state was obtained for UN– which is mainly associated with the 3H ΛS state. Thermochemical calculations estimate a bond dissociation energy (BDE) for UN– (U– + N) of 665.9 kJ/mol, ∼15% larger than that of UN and UN+. The NBO analysis reveals U–N triple bonds for the UN, UN–, and UN+ species.
The results of ab initio correlated molecular orbital theory electronic structure calculations for low-lying electronic states are presented for UH and UH − and compared to photoelectron spectroscopy measurements. The calculations were performed at the CCSD(T)/CBS and multireference CASPT2 including spin−orbit effects by the state interacting approach levels. The ground states of UH and UH − are predicted to be 4 Ι 9/2 and 5 Λ 6 , respectively. The spectroscopic parameters T e , r e , ω e , ω e x e , and B e were obtained, and potential energy curves were calculated for the low energy Ω states of UH. The calculated adiabatic electron affinity is 0.468 eV in excellent agreement with an experimental value of 0.462 ± 0.013 eV. The lowest vertical detachment energy was predicted to be 0.506 eV for the ground state, and the adiabatic ionization energy (IE) is predicted to be 6.116 eV. The bond dissociation energy (BDE) and heat of formation values of UH were obtained using the IE calculated at the Feller−Peterson−Dixon level. For UH, UH − , and UH + , the BDEs were predicted to be 225.5, 197.9, and 235.5 kJ/mol, respectively. The BDE for UH is predicted to be ∼20% lower in energy than that for ThH. The analysis of the natural bond orbitals shows a significant U + H − ionic component in the bond of UH.
A combination of high-level ab initio calculations and anion photoelectron detachment (PD) measurements is reported for the UC, UC–, and UC+ molecules. To better compare the theoretical values with the experimental photoelectron spectrum (PES), a value of 1.493 eV for the adiabatic electron affinity (AEA) of UC was calculated at the Feller–Peterson–Dixon (FPD) level. The lowest vertical detachment energy (VDE) is predicted to be 1.500 eV compared to the experimental value of 1.487 ± 0.035 eV. A shoulder to lower energy in the experimental PD spectrum with the 355 nm laser can be assigned to a combination of low-lying excited states of UC– and excited vibrational states. The VDEs calculated for the low-lying excited electronic states of UC at the SO-CASPT2 level are consistent with the observed additional electron binding energies at 1.990, 2.112, 2.316, and 3.760 eV. Potential energy curves for the Ω states and the associated spectroscopic properties are also reported. Compared to UN and UN+, the bond dissociation energy (BDE) of UC (411.3 kJ/mol) is predicted to be considerably lower. The natural bond orbitals (NBO) calculations show that the UC0/+/– molecules have a bond order of 2.5 with their ground-state configuration arising from changes in the oxidation state of the U atom in terms of the 7s orbital occupation: UC (5f27s1), UC– (5f27s2), and UC+ (5f27s0). The behavior of the UN and UC sequence of molecules and anions differs from the corresponding sequences for UO and UF.
The observation and characterization of the anions: Th2O–, Th2Au–, and Th2AuO1,2 – is reported. These species were studied through a synergetic combination of anion photoelectron spectroscopy and ab initio correlated molecular orbital theory calculations at the CCSD(T) level with large correlation-consistent basis sets. To better understand the energetics and bonding in these anions and their corresponding neutrals, a range of smaller diatomic to tetratomic species were studied computationally. Correlated molecular orbital theory calculations at the CCSD(T) level showed that in most of these cases, there are close-lying anions and neutral clusters with different geometries and spin states and are consistent with the experimentally observed spectra. Thus, comparison of experimentally determined and computationally predicted vertical detachment energies and electron affinities for different optimized geometries and spin states shows excellent agreement to within 0.1 eV. The structures for both the neutrals and anions have a significant ionic component to the bonding because of the large electron affinity of the Au atom and modest ionization potentials for Th2, Th2O, and Th2O2. The analysis of the bonding for the Th–Th bonds from the molecular orbitals is consistent with this ionic model. The results show that there is a wide variation in the bond distance from 2.7 to 3.5 Å for the Th–Th bonds all of which are less than twice the atomic radius of Th of 3.6 Å. The bond distances encompass bond orders from 4 to 0. There can be different bond orders for the same bond distance depending on the nature of the ionic bonding suggesting that one may not be able to correlate the bond order with the bond distance in these types of clusters. In addition, the presence of an Au atom may provide a unique probe of the bonding in such clusters because of its ability to accept an electron from clusters with modest ionization potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.