Cobalt use is increasing particularly due to its use as one of the primary metals in cobalt-chromium-molybdenum (CoCrMo) metal-on-metal prosthetics. CoCrMo is a high-strength, wear-resistant alloy with reduced risk for prosthetic loosening and device fracture. More than 500,000 people receive hip implants each year in the USA which puts them at potential risk for exposure to metal ions and particles released by the prosthetic implants. Data show cobalt ions released from prosthetics reach the bloodstream and accumulate in the bladder. As patients with failed hip implants show increased urinary and blood cobalt levels, no studies have considered the effects of cobalt on human urothelial cells. Accordingly, we investigated the cytotoxic and genotoxic effects of particulate and soluble cobalt in urothelial cells. Exposure to both particulate and soluble cobalt resulted in a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ions. Based on intracellular cobalt ion levels, we found, when compared to particulate cobalt, soluble cobalt was more cytotoxic, but induced similar levels of genotoxicity. Interestingly, at similar intracellular cobalt ion concentrations, soluble cobalt induced cell cycle arrest indicated by a lack of metaphases not observed after particulate cobalt treatment. These data indicate that cobalt compounds are cytotoxic and genotoxic to human urothelial cells and solubility may play a key role in cobalt-induced toxicity.
Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.